Have a personal or library account? Click to login
Spatial particle size distribution at intact sample surfaces of a Dystric Cambisol under forest use Cover

Spatial particle size distribution at intact sample surfaces of a Dystric Cambisol under forest use

Open Access
|Feb 2022

References

  1. Ad-hoc-AG Boden, 2005. Bodenkundliche Kartieranleitung. 5th ed. Bundesanstalt für Geowissenschaften und Rohstoffe und Niedersächsisches Landesamt für Bodenforschung, Hannover.
  2. Bachmann, J., Goebel, M.-O., Woche, S.K., 2013. Smallscale contact angle mapping on undisturbed soil surfaces. J. Hydrol. Hydromech., 611, 3–8. https://doi.org/10.2478/johh-2013-000210.2478/johh-2013-0002
  3. Beck-Broichsitter, S., Gerriets, M.R., Gerke, H.H., Sobotkova, M., Dusek, J., Dohrmann, R., Horn, R., 2020a. Brilliant Blue sorption characteristics of clay-organic aggregate coatings from Bt-horizon. Soil Till. Res., 201, 104635. https://doi.org/10.1016/j.still.2020.10463510.1016/j.still.2020.104635
  4. Beck-Broichsitter, S., Gerriets, M.R., Puppe, D., Leue, M., Sobotkova, M., Dusek, J., Gerke, H.H., 2020b. Laser-based 3D microscopic gauging of soil aggregate coating thickness and volume. Soil Till. Res., 204, 104715. https://doi.org/10.1016/j.still.2020.10471510.1016/j.still.2020.104715
  5. Beck-Broichsitter, S., Ruth, S., Schröder, R., Fleige, H., Gerke, H.H., Horn, R., 2020c. Simultaneous determination of wettability and shrinkage in an organic residue amended loamy topsoil. J. Hydrol. Hydromech., 68, 2, 111–118. https://doi.org/10.2478/johh-2020-000710.2478/johh-2020-0007
  6. Bieganowski, A., Ryżak, M., Sochan, A., Barna, G., Hernádi, H., Beczek, M., Polakowski, C., Makó, A., 2018. Chapter Five - Laser diffractometry in the measurements of soil and sediment particle size distribution. Advances in Agronomy 151, 215–279.10.1016/bs.agron.2018.04.003
  7. Blume, H.-P., Stahr, K., Leinweber, P., 2011. Bodenkundliches Praktikum - Eine Einführung in pedologisches Arbeiten für Ökologen, Land- und Forstwirte, Geo- und Umweltwissenschaftler. Spektrum Akademischer Verlag, Heidelberg.
  8. de Oliveira, J.S., Inda, A.V., Barrón, V., Torrent, J., Tiecher, T., de Oliveira Camargo, F.A., 2020. Soil properties governing phosphorus adsorption in soils of Southern Brazil. Geoderma Regional, 22, e00318 https://doi.org/10.1016/j.geodrs.2020.e0031810.1016/j.geodrs.2020.e00318
  9. Dohnal, M., Vogel, T., Sanda, M., Jelinkova, V., 2012. Uncertainty analysis of a dual-continuum model used to simulate subsurface hillslope runoff involving oxygen-18 as natural tracer. J. Hydrol. Hydromech., 60, 3, 194–205. https://doi.org/10.2478/v10098-012-0017-010.2478/v10098-012-0017-0
  10. Dusek, J., Vogel, T., 2019. Modeling travel time distributions of preferential subsurface runoff, deep percolation and transpiration at a montane forest hillslope site. Water, 11, 2396. https://doi.org/10.3390/w1111239610.3390/w11112396
  11. Fér, M., Leue, M., Kodešová, R., Gerke, H.H., Ellerbrock, R.H., 2016. Droplet infiltration dynamics and soil wettability related to soil organic matter of soil aggregate coatings and interiors. J. Hydrol. Hydromech., 64, 111–120. https://doi.org/10.1515/johh-2016-002110.1515/johh-2016-0021
  12. Fér, M., Kodešová, R., Golovko, O., Schmidtová, Z., Klement, A., Nikodem, A., Kočárek, M., Grabic, R., 2018. Sorption of atenolol, sulfamethoxazole, and carbamazepine onto soil aggregates from the illuvial horizon of the Haplic Luvisol on loess. Soil Water Res., 13, 177−183. https://doi.org/10.17221/82/2018-SWR10.17221/82/2018-SWR
  13. Goossens, D., 2008. Techniques to measure grain-size distributions of loamy sediments: A comparative study of ten instruments for wet analysis. Sedimentology, 55, 65–96. https://doi.org/10.1111/j.1365-3091.2007.00893.x10.1111/j.1365-3091.2007.00893.x
  14. Grehan, G., Maheu, B., Gouesbet, G., 1986. Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation. Appl. Opt., 25, 19, 3539–3548. https://doi.org/10.1364/AO.25.00353910.1364/AO.25.003539
  15. Hasler, M., Horton, L.A., 2008. Multiple contrast tests in the presence of heteroscedasticity. Biometrical J., 50, 793–800. https://doi.org/10.1002/bimj.20071046610.1002/bimj.20071046618932141
  16. Hobley, E.U., Prater, I., 2019. Estimating soil texture from vis-NIR spectra. Eur. J. Soil Sci., 70, 1, 83–95. https://doi.org/10.1111/ejss.1273310.1111/ejss.12733
  17. Igaz, D., Aydin, E., Šinkovičová, M., Šimanský, V., Tall, A., Horák, J., 2020. Laser diffraction as an innovative alternative to standard pipette method for determination of soil texture classes in Central Europe. Water, 12, 1232. https://doi.org/10.3390/w1205123210.3390/w12051232
  18. ISO 1332:2020-01. Particle Size Analysis – Laser Diffraction Methods. International Organization for Standardization, Geneva, Switzerland.
  19. ISO 11277:2020. Soil quality — Determination of particle size distribution in mineral soil material — Method by sieving and sedimentation. International Organization for Standardization, Geneva, Switzerland.
  20. IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.
  21. Jensen, J.L., Schjønning, P., Watts, C.W., Christensen, B.T., Munkholm, L.J., 2017. Soil texture analysis revisited: Removal of organic matter matters more than ever. PLoS ONE, 12, 5, e0178039. https://doi.org/10.1371/journal.pone.017803910.1371/journal.pone.0178039543688228542416
  22. Koza, M., Schmidt, G., Bondarovich, A., Akshalov, K., Conrad, C., Pöhlitz, J., 2021. Consequences of chemical pretreatments in particle size analysis for modelling wind erosion. Geoderma, 396, 115073. https://doi.org/10.1016/j.geoderma.2021.11507310.1016/j.geoderma.2021.115073
  23. Kubínová, R., Neumann, M., Kavka, P., 2021. Aggregate and particle size distribution of the soil sediment eroded on steep artificial slopes. Appl. Sci., 11, 4427. https://doi.org/10.3390/app1110442710.3390/app11104427
  24. Leue, M., Wohld, A., Gerke, H.H., 2018. Two-dimensional distribution of soil organic carbon at intact macropore surfaces in BT-horizons. Soil Till. Res., 176, 1–9. https://doi.org/10.1016/j.still.2017.10.00210.1016/j.still.2017.10.002
  25. Leue, M., Beck-Broichsitter, S., Felde, V.J.M.N.L., Gerke, H.H., 2019. Determining mm-scale maps of cation exchange capacity at macropore surfaces in Bt-horizons. Vadose Zone J., 16, 9. https://doi.org/10.2136/vzj2018.08.016210.2136/vzj2018.08.0162
  26. Leue, M., Uteau, D., Peth, S., Beck-Broichsitter, S., Gerke, H.H., 2020. Volume-related quantification of organic carbon content and cation exchange capacity of macropore surfaces in Bt horizons. Vadose Zone J., 19, e20069. https://doi.org/10.1002/vzj2.2006910.1002/vzj2.20069
  27. Li, J, Heap, A.D., 2011. A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors. Ecol. Inform., 6, 228–241. https://doi.org/10.1016/j.ecoinf.2010.12.00310.1016/j.ecoinf.2010.12.003
  28. Makó, A., Szabó, B., Rajkai, K., Szabó, J., Bakacsi, Z., Labancz, V., Hernádi, H., Barna, G., 2019. Evaluation of soil texture determination using soil fraction data resulting from laser diffraction method. Int. Agrophys., 33, 4, 445–454. https://doi.org/10.31545/intagr/11334710.31545/intagr/113347
  29. Mastersizer 3000 User Guide, 2020. Malvern Panalytical Ltd, Malvern, UK.
  30. McNeill, S.J., Liburne, L.R., Carrick, S., Webb, T.H., Cuthill, T., 2018. Pedotransfer functions for the soil water characteristics of New Zealand soils using S-map information. Geoderma, 326, 96–110. https://doi.org/10.1016/j.geoderma.2018.04.01110.1016/j.geoderma.2018.04.011
  31. Mehra, O.P., Jackson, M.L., 1960. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clay Clay Miner., 7, 317–327. https://doi.org/10.1346/CCMN.1958.007012210.1346/CCMN.1958.0070122
  32. Merkus, H.G., 2009. Particle Size Measurements: Fundamentals, Practice, Quality. Springer, Dordrecht, the Netherlands.
  33. Mikutta, R., Kleber, M., Torn, M.S., Jahn, R., 2006. Stabilization of soil organic matter: association with minerals or chemical recalcitrance? Biogeochemistry, 77, 25–56. https://doi.org/10.1007/s10533-005-0712-610.1007/s10533-005-0712-6
  34. Polakowski, C., Ryzak, M., Sochan, A., Beczek, M., Mazur, R., Bieganowski, A., 2021. Particle size distribution of various soil materials measured by laser diffraction - the problem of reproducibility. Minerals, 11, 465. https://doi.org/10.3390/min1105046510.3390/min11050465
  35. QGIS Development Team, 2013. Geographic Information System. Open Source Geospatial Foundation. http://qgis.org.
  36. R Development Core Team, 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  37. Sanda, M., Cislerova, M., 2009. Transforming hydrographs in the hillslope subsurface. J. Hydrol. Hydromech., 57, 264–275. https://doi.org/10.2478/v10098-009-0023-z10.2478/v10098-009-0023-z
  38. Sanda, M., Vitvar, T., Kulasova, A., Jankovec, J., Cislerova, M., 2014. Run-off formation in a humid, temperate headwater catchment using a combined hydrological, hydrochemical and isotopic approach (Jizera Mountains, Czech Republic). Hydrol. Process., 28, 3217–3229. https://doi.org/10.1002/hyp.984710.1002/hyp.9847
  39. Soil Survey Staff, 1999. Soil Taxonomy: A basic system of soil classification for making and interpreting soil surveys. USDA, Washington, DC, 869 p.
  40. Stokes, G.G., 1851. On the effect of the internal friction of fluids on the motion of pendulums, 9. Pitt Press Cambridge.
  41. Thomas, C.L., Hernandez-Allica, J., Dunham, S.J., McGrath, S.P., Haefele, S.M., 2021. A comparison of soil texture measurements using mid-infrared spectroscopy (MIRS) and laser diffraction analysis (LDA) in diverse soils. Sci. Rep., 11, 16. https://doi.org/10.1038/s41598-020-79618-y10.1038/s41598-020-79618-y779431133420161
  42. Vdović, N., Obhođaš, J., Pikelj, K., 2010. Revisiting the particle-size distribution of soils: comparison of different methods and sample pre-treatments. Eur. J. Soil Sci., 61, 854–864. https://doi.org/10.1111/j.1365-2389.2010.01298.x10.1111/j.1365-2389.2010.01298.x
  43. Yang, Y., Wang, L., Wendroth, O., Liu, B., Cheng, C., Huang, T., Shi, Y., 2019. Is the Laser diffraction method reliable for soil particle size distribution analysis? Soil Sci. Soc. Am. J., 83, 2. https://doi.org/10.2136/sssaj2018.07.025210.2136/sssaj2018.07.0252
  44. Zarco-Perello, S., Simões, N., 2017. Ordinary kriging vs inverse distance weighting: Spatial interpolation of the sessile community of Madagascar Reef, Gulf of Mexico. Peer J., 5, e4078. https://doi.org/10.7717/peerj.407810.7717/peerj.4078571247029204321
  45. Zimmermann, I., Horn, R., 2020. Impact of sample pretreatment on the result of texture analysis in different soils. Geoderma, 371, 114379. https://doi.org/10.1016/j.geoderma.2020.11437910.1016/j.geoderma.2020.114379
DOI: https://doi.org/10.2478/johh-2022-0003 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 30 - 41
Submitted on: Jun 29, 2021
Accepted on: Dec 13, 2021
Published on: Feb 12, 2022
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Steffen Beck-Broichsitter, Marisa R. Gerriets, Martin Neumann, Jan-Frantisek Kubat, Jaromir Dusek, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.