Have a personal or library account? Click to login
Performance of experimental bioretention cells during the first year of operation Cover

Performance of experimental bioretention cells during the first year of operation

Open Access
|Feb 2022

References

  1. Aravena, J., Dussaillant-Jones, A., 2009. Stormwater infiltration and focused recharge modeling with finite-volume two-dimensional Richards equation: application to an experimental rain garden. Journal of Hydraulic Engineering, 135, 12. https://doi.org/10.1061/ASCEHY.1943-7900.000011110.1061/(ASCE)HY.1943-7900.0000111
  2. Arganda-Carreras, I., Kaynig, V., Rueden, C., Eliceiri, K., Schindelin, J., Cardona, A., Seung, H., 2017. Trainable Weka Segmentation: A machine learning tool for microscopy pixel classification. Bioinformatics, 33, 15, 2424–2426. https://doi.org/10.1093/bioinformatics/btx18010.1093/bioinformatics/btx180
  3. Archer, N.A.L., Quinton, J.N., Hess, T.M., 2002. Below-ground relationships of soil texture, roots and hydraulic conductivity in two-phase mosaic vegetation in South-east Spain. Journal of Arid Environments, 52, 535–553. https://doi.org/10.1006/jare.2002.101110.1006/jare.2002.1011
  4. Austin, G., 2012. Design and performance of bioretention beds for removal of stormwater contaminants. Journal of Green Building, 7, 1, 17–27.10.3992/jgb.7.1.17
  5. Bioretention Manual, 2003. Department of Environmental Resources, Maryland. Environmental Services Division, Department of Environmental Resources, The Prince George’s County, Maryland.
  6. Booth, D., Hartley, D., Jackson, C. 2002. Forest cover, impervious-surface area, and the mitigation of stormwater impacts. Journal of the American Water Resources Association, 38, 835–845. https://doi.org/10.1111/j.1752-1688.2002.tb01000.x10.1111/j.1752-1688.2002.tb01000.x
  7. Bortolini, L., Zanin, G., 2017. The experimental and educational rain gardens of the Agripolis Campus (north-east Italy): preliminary results on hydrological and plant behavior. Acta Horticulturae, 531–536. https://doi.org/10.17660/ActaHortic.2017.1189.10610.17660/ActaHortic.2017.1189.106
  8. Bortolini, L., Zanin, G., 2018. Hydrological behaviour of the rain gardens and plant suitability: A study in the Veneto plane (north-eastern Italy) conditions. Urban Forestry & Urban Greening, 37. https://doi.org/10.1016/j.ufug.2018.07.00310.1016/j.ufug.2018.07.003
  9. Brander, K., Owen, K., Potter, K., 2004. Modeled impacts of development type on runoff volume and infiltration performance. Journal of the American Water Resources Association, 40, 961–969. https://doi.org/10.1111/j.1752-1688.2004.tb01059.x10.1111/j.1752-1688.2004.tb01059.x
  10. Brown, R., Hunt, W., 2012. Improving bioretention/Biofiltration performance with restorative maintenance. Water Science and Technology, 65, 361–367. https://doi.org/10.2166/wst.2012.86010.2166/wst.2012.860
  11. Casagrande, A., 1934. Die Aräometer-Methode zur bestim-mung der Kornverteilung von Böden und anderen Materia-lien. Julius Springer, Berlin. (In German.)10.1007/978-3-642-91247-4
  12. Cislerova, M., Simunek, J., Vogel, T., 1988. Changes of steady state infiltration rate in recurrent ponded infiltration experiments. Journal of Hydrology, 104, 1–16. https://doi.org/10.1016/0022-1694(88)90154-010.1016/0022-1694(88)90154-0
  13. Coffman, L.S., France, R.L., 2002. Low-impact development: an alternative stormwater management technology. In: Handbook of Water Sensitive Planning and Design, pp. 97–123.10.1201/9781420032420.ch1.5
  14. Davis, A., 2008. Field performance of bioretention: Hydrology impacts. Journal of Hydrologic Engineering, 13, 90. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:2-9010.1061/(ASCE)1084-0699(2008)13:2(90)
  15. DeBusk, K.M., Wynn, T.M., 2011. Storm-water bioretention for runoff quality and quantity mitigation. Journal of Environmental Engineering-ASCE, 137, 800–808. https://doi.org/10.1061/(asce)ee.1943-7870.000038810.1061/(ASCE)EE.1943-7870.0000388
  16. Dietrich, A., Yarlagadda, R., Gruden, C., 2017. Estimating the potential benefits of green stormwater infrastructure on developed sites using hydrologic model simulation. Environmental Progress & Sustainable Energy, 36, 2, 557–564. https://doi.org/10.1002/ep.1242810.1002/ep.12428
  17. Dietz, M.E., 2007. Low impact development practices: A review of current research and recommendations for future directions. Water Air Soil Pollution, 186, 351–363. https://doi.org/10.1007/s11270-007-9484-z10.1007/s11270-007-9484-z
  18. Dietz, M.E., Clausen, J.C., 2005. A field evaluation of rain garden flow and pollutant treatment. Water Air Soil Pollution, 167, 123–138. https://doi.org/10.1007/s11270-005-8266-8.10.1007/s11270-005-8266-8
  19. Emerson, C.H., Traver, R.G., 2008. Multiyear and seasonal variation of infiltration from storm-water best management practices. Journal of Irrigation and Drainage Engineering, 134, 598–605. https://doi.org/10.1061/(asce)0733-9437(2008)134:5(598)10.1061/(ASCE)0733-9437(2008)134:5(598)
  20. Facility for Advancing Water Biofiltration (FAWB), 2009. Adoption Guidelines for Stormwater Biofiltration Systems. Facility for Advancing Water Biofiltration, Monash University, June 2009.
  21. Filipović, V., Mallmann, F., Coquet, Y., Simunek, J., 2014. Numerical simulation of water flow in tile and mole drainage systems. Agricultural Water Management, 146, 105–114. https://doi.org/10.1016/j.agwat.2014.07.02010.1016/j.agwat.2014.07.020
  22. Fletcher, T.D., Shuster, W., Hunt, W.F., Ashley, R., Butler, D., Arthur, S., Trowsdale, S., Barraud, S., Semadeni-Davies, A., Bertrand-Krajewski, J.L., Mikkelsen, P.S., Rivard, G., Uhl, M., Dagenais, D., Viklander, M., 2015. SUDS, LID, BMPs, WSUD and more - The evolution and application of terminology surrounding urban drainage. Urban Water Journal, 12, 525–542. https://doi.org/10.1080/1573062x.2014.91631410.1080/1573062X.2014.916314
  23. Freeze, R.A., Cherry, J.A., 1979. Groundwater. Prentice-Hall, Englewood Cliffs, N.J.
  24. Gulbaz, S., Kazezyilmaz-Alhan, C.M., 2017. Experimental investigation on hydrologic performance of LID with rainfall-watershed-bioretention system. Journal of Hydrologic Engineering, 22, 10. https://doi.org/10.1061/(asce)he.1943-5584.000145010.1061/(ASCE)HE.1943-5584.0001450
  25. Hatt, B.E., Fletcher, T.D., Deletic, A., 2009. Hydrologic and pollutant removal performance of stormwater biofiltration systems at the field scale. Journal of Hydrology, 365, 310–321. https://doi.org/10.1016/j.jhydrol.2008.12.00110.1016/j.jhydrol.2008.12.001
  26. Hollis, G.E., 1977. Water yield changes after the urbanization of the canon’s brook catchment, Harlow, England. Hydro-logical Sciences Bulletin, 22, 1, 61–75. DOI: 10.1080/0262666770949169410.1080/02626667709491694
  27. Holman-Dodds, J., Bradley, A., Potter, K., 2007. Evaluation of hydrologic benefits of infiltration based urban storm water management. Journal of the American Water Resources Association, 39, 205–215. https://doi.org/10.1111/j.1752-1688.2003.tb01572.x10.1111/j.1752-1688.2003.tb01572.x
  28. Hood, M., Clausen, J., Warner, G., 2007. Comparison of stormwater lag times for low impact and traditional residential development. Journal of the American Water Resources Association, 43, 1036–1046. https://doi.org/10.1111/j.1752-1688.2007.00085.x10.1111/j.1752-1688.2007.00085.x
  29. Houdeshel, C.D., Hultine, K.R., Johnson, N.C., Porneroy, C.A., 2015. Evaluation of three vegetation treatments in bioretention gardens in a semi-arid climate. Landscape and Urban Planning, 135, 62–72. https://doi.org/10.1016/j.landurbplan.2014.11.00810.1016/j.landurbplan.2014.11.008
  30. Huber, W.C., 1995. EPA storm water management model-SWMM. In: Singh, V.P. (Ed.): Computer Models of Water-shed Hydrology. Water Resources Publications, pp. 783–808.
  31. Hunt, W., Smith, J., Jadlocki, S., Hathaway, J., Eubanks, P., 2008. Pollutant removal and peak flow mitigation by a bio-retention cell in urban Charlotte, N.C. Journal of Environmental Engineering, 134, 5, 403. https://doi.org/10.1061/(ASCE)0733-9372(2008)134:5(403)10.1061/(ASCE)0733-9372(2008)134:5(403)
  32. Imteaz, M.A., Nguyen, T., Kuok, K., 2015. Experimental and mathematical modelling study on clogging behaviour of bio-retention systems. International Journal of Hydrology Science and Technology, 5. https://doi.org/10.1504/IJHST.2015.06928010.1504/IJHST.2015.069280
  33. Jangorzo, N.S., Watteau, F., Schwartz, C., 2013. Evolution of the pore structure of constructed Technosols during early pedogenesis quantified by image analysis. Geoderma, 207, 180–192. https://doi.org/10.1016/j.geoderma.2013.05.01610.1016/j.geoderma.2013.05.016
  34. Jenkins, J.K.G., Wadzuk, B.M., Welker, A.L., 2010. Fines accumulation and distribution in a storm-water rain garden nine years postconstruction. Journal of Irrigation and Drainage Engineering, 136, 862–869. https://doi.org/10.1061/(asce)ir.1943-4774.000026410.1061/(ASCE)IR.1943-4774.0000264
  35. Kabelkova, I., Stransky, D., Bares, V., 2013. TNV 75 9011 Hospodareni se srazkovymi vodami = TNV 75 9011 Sustainable stormwater management. Part 1: Choice of the drainage concept and of the technical solution. Vodní hospodářství, 63, 9, 289–294.
  36. Kabisch, N., Korn, H., Stadler, J., Bonn, A., 2017. Nature-Based solutions to climate change adaptation in urban Areas—Linkages between science. Policy and Practice, 1–11. https://doi.org/10.1007/978-3-319-56091-5_110.1007/978-3-319-56091-5_1
  37. Klute, A., 1986. Water retention: Laboratory methods. In: Klute, A. (Ed.): Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. American Society of Agronomy, Soil Science Society of America, Wisc., pp. 635–662. https://doi.org/10.2136/sssabookser5.1.2ed.c2610.2136/sssabookser5.1.2ed.c26
  38. Le Coustumer, S., Fletcher, T., Deletic, A., Barraud, S., Lewis, J., 2009. Hydraulic performance of biofilter systems for stormwater management: Influences of design and operation. Journal of Hydrology, 376, 16–23. https://doi.org/10.1016/j.jhydrol.2009.07.01210.1016/j.jhydrol.2009.07.012
  39. Le Coustumer, S., Fletcher, T.D., Deletic, A., Barraud, S., Poelsma, P., 2012. The influence of design parameters on clogging of stormwater biofilters: A large-scale column study. Water Res., 46, 6743–6752. https://doi.org/10.1016/j.watres.2012.01.02610.1016/j.watres.2012.01.026
  40. Li, H., Davis, A.P., 2008. Urban particle capture in bioretention media. I: Laboratory and field studies. Journal of Environmental Engineering, 134, 409–418. https://doi.org/10.1061/(asce)0733-9372(2008)134:6(409)10.1061/(ASCE)0733-9372(2008)134:6(409)
  41. Li, H., Davis, A.P., 2009. Water quality improvement through reductions of pollutant loads using bioretention. Journal of Environmental Engineering, 135, 567–576. https://doi.org/10.1061/(asce)ee.1943-7870.000002610.1061/(ASCE)EE.1943-7870.0000026
  42. Li, J., Zhao, R.S., Li, Y.J., Chen, L., 2018. Modeling the effects of parameter optimization on three bioretention tanks using the HYDRUS-1D model. Journal of Environmental Management, 217, 38–46. DOI: 10.1016/.jenvman.2018.03.07810.1016/j.jenvman.2018.03.078
  43. Liao, K.-H., Deng, S., Tan, P., 2017. Blue-green infrastructure: New frontier for sustainable urban stormwater management. In: Greening Cities. Springer, pp. 203–226. https://doi.org/10.1007/978-981-10-4113-6_1010.1007/978-981-10-4113-6_10
  44. Marsalek, J., Barnwell, T., Geiger, W., Grottker, M., Huber, W., Saul, A., Schilling, W., Torno, H., 1993. Urban drainage systems: design and operation. Water Science and Technology, 27, 31–70. https://doi.org/10.2166/wst.1993.029110.2166/wst.1993.0291
  45. Melbourne water, 2013. Water sensitive urban design guidelines. South Eastern Councils.
  46. Muerdter, C., Wong C., LeFevre G., 2018. Emerging investigator series: The role of vegetation in bioretention for storm-water treatment in the built environment: pollutant removal, hydrologic function, and ancillary benefits. Environmental Science: Water Research & Technology, 4, 592–612. DOI: 10.1039/C7EW00511C10.1039/C7EW00511C
  47. Olszewski, J., Davis, A., 2012. Comparing the hydrologic performance of a bioretention cell with predevelopment values. Journal of Irrigation and Drainage Engineering, 139, 124–130. https://doi.org/10.1061/(ASCE)IR.1943-4774.000050410.1061/(ASCE)IR.1943-4774.0000504
  48. Paus, K.H., Muthanna, T.M., Braskerud, B.C., 2016. The hydrological performance of bioretention cells in regions with cold climates: seasonal variation and implications for design. Hydrology Research, 47, 291–304. https://doi.org/10.2166/nh.2015.08410.2166/nh.2015.084
  49. Princ, T., Fideles, H.M., Koestel, J., Snehota, M., 2020. The impact of capillary trapping of air on satiated hydraulic conductivity of sands interpreted by X-ray microtomography. Water, 12, 2, 445. https://doi.org/10.3390/w1202044510.3390/w12020445
  50. Qin, H., Li, Z., Fu, G., 2013. The effects of low impact development on urban flooding under different rainfall characteristics. Journal of Environmental Management, 129, 577–585. https://doi.org/10.1016/j.jenvman.2013.08.02610.1016/j.jenvman.2013.08.026
  51. Recanatesi, F., Petroselli, A., Ripa, M., Leone, A., 2017. Assessment of stormwater runoff management practices and BMPs under soil sealing: A study case in a peri-urban water-shed of the metropolitan area of Rome (Italy). Journal of Environmental Management, 201, 6–18. https://doi.org/10.1016/j.jenvman.2017.06.02410.1016/j.jenvman.2017.06.024
  52. Reginato, R., Bavel, C., 1962. Pressure cell for soil cores. Soil Science Society of America Journal, 26. https://doi.org/10.2136/sssaj1962.03615995002600010001x10.2136/sssaj1962.03615995002600010001x
  53. Roseen, R., Ballestero, T., Houle, J., Avelleneda, P., Wildey, R., Briggs, J., 2006. Storm water low-impact development, conventional structural, and manufactured treatment strategies for parking lot runoff: performance evaluations under varied mass loading conditions. Journal of the Transportation Research Board, 1984, 135–147. https://doi.org/10.1177/036119810619840011310.1177/0361198106198400113
  54. Scalenghe, R., Ferraris, S., 2009. The first forty years of a Technosol. Pedosphere, 19, 40–52. https://doi.org/10.1016/s1002-0160(08)60082-x10.1016/S1002-0160(08)60082-X
  55. Sere, G., Ouvrard, S., Magnenet, V., Pey, B., Morel, J.L., Schwartz, C., 2012. Predictability of the evolution of the soil structure using water flow modeling for a constructed Technosol. Vadose Zone Journal, 11, 13. https://doi.org/10.2136/vzj2011.006910.2136/vzj2011.0069
  56. Shrestha, P., 2018. Effects of different soil media, vegetation, and hydrologic treatments on nutrient and sediment removal in roadside bioretention systems. Ecological Engineering, 112. https://doi.org/10.1016/j.ecoleng.2017.12.00410.1016/j.ecoleng.2017.12.004
  57. Schaap, M., Leij, F., Van Genuchten, M., 2001. ROSETTA: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology, 251, 163–176. https://doi.org/10.1016/S0022-1694(01)00466-810.1016/S0022-1694(01)00466-8
  58. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A., 2012. Fiji: An Open-Source Platform for Biological-Image Analysis. Nature Methods, 9, 676–682. https://doi.org/10.1038/nmeth.201910.1038/nmeth.2019385584422743772
  59. Skala, V., Dohnal, M., Votrubova, J., Vogel, T., Dusek, J., Sacha, J., Jelinkova, V., 2020. Hydrological and thermal regime of a thin green roof system evaluated by physically-based model. Urban Forestry & Urban Greening, 48, 126582. https://doi.org/10.1016/j.ufug.2020.12658210.1016/j.ufug.2020.126582
  60. Snehota, M., Cislerova, M., Amin, M.H.G., Hall, L.D., 2010. Tracing the entrapped air in heterogeneous soil by means of magnetic resonance imaging. all rights reserved. Vadose Zone Journal, 9, 2, 373–384. https://doi.org/10.2136/vzj2009.010310.2136/vzj2009.0103
  61. Snehota, M., Jelinkova, V., Sobotkova, M., Sacha, J., Vontobel, P., Hovind, J., 2015. Water and entrapped air redistribution in heterogeneous sand sample: Quantitative neutron imaging of the process. Water Resources Research, 51, 2, 1359–1371. https://doi.org/10.1002/2014WR01543210.1002/2014WR015432
  62. Snehota, M., Hanzlikova, J., Sobotkova, M., Moravcik, P., 2021. Water and thermal regime of extensive green roof test beds planted with sedum cuttings and sedum carpets. Journal of Soils and Sediments. https://doi.org/10.1007/s11368-020-02778-x10.1007/s11368-020-02778-x
  63. Soil Survey Manual, 2017. USDA Handbook 18. Government Printing Office, Washington, D.C.
  64. Šimůnek, J., van Genuchten, M.Th., Šejna, M., 2008. Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone Journal, 7, 587–600. https://doi.org/10.2136/vzj2007.007710.2136/vzj2007.0077
  65. Tahvonen, O., 2018. Adapting bioretention construction details to local practices in Finland. Sustainability, 10, 17. https://doi.org/10.3390/su1002027610.3390/su10020276
  66. Topp, G.C., Davis, J.L., Annan, P., 1980. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resources Research, 16, 574–582. https://doi.org/10.1029/WR016i003p0057410.1029/WR016i003p00574
  67. Uber, M., Vandervaere, J., Zin, I., Braud, I., Heistermann, M., Legoût, C., Molinié, G., Nord, G., 2018. How does initial soil moisture influence the hydrological response? A case study from southern France. Hydrology and Earth System Sciences Discussions, 1–43. https://doi.org/10.5194/hess-2018-2810.5194/hess-2018-28
  68. van Genuchten, M.Th., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soil. Soil Science Society of America Journal, 44, 5. https://doi.org/10.2136/sssaj1980.03615995004400050002x10.2136/sssaj1980.03615995004400050002x
  69. van Genuchten, M., Leij, F., Yates, S., Williams, J., 1991. The RETC Code for quantifying hydraulic functions of unsatu-rated soils. EPA/600/2-91/065, R.S. 83.
  70. Villarreal, E., Davies, A., Bengtsson, L., 2004. Inner city stormwater control using a combination of Best Management Practices. Ecological Engineering, 22, 279–298. https://doi.org/10.1016/j.ecoleng.2004.06.00710.1016/j.ecoleng.2004.06.007
  71. Vogel, T., Cislerova, M., Hopmans, J., 1991. Porous media with linearly variable hydraulic properties. Water Resources Research, 27, 2735–2740. https://doi.org/10.1029/91WR0167610.1029/91WR01676
  72. Willaredt, M., Nehls, T., 2021. Investigation of water retention functions of artificial soil-like substrates for a range of mixing ratios of two components. Journal of Soils and Sediments, 21, 2118–2129. https://doi.org/10.1007/s11368-020-02727-810.1007/s11368-020-02727-8
  73. Wong, T., Fletcher, T., Duncan, H., Jenkins, G., 2006. Modelling urban stormwater treatment – A unified aproach. Ecological Engineering, 27, 58–70. DOI: 10.1016/j.ecoleng.2005.10.01410.1016/j.ecoleng.2005.10.014
  74. Zhang, K., Chui, T.F.M., 2017. Evaluating hydrologic performance of bioretention cells in shallow groundwater. Hydro-logical Processes, 31, 4122–4135. https://doi.org/10.1002/hyp.1130810.1002/hyp.11308
  75. Zhu, Y., Irmak, S., Jhala, A.J., Vuran, M.C., Diotto, A., 2019. Time-domain and frequency-domain reflectometry type soil moisture sensor performance and soil temperature effects in fine- and coarse-textured soils. Applied Engineering in Agriculture, 35, 117–134. DOI: 10.13031/aea.1290810.13031/aea.12908
DOI: https://doi.org/10.2478/johh-2021-0038 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 42 - 61
Submitted on: Jul 6, 2021
Accepted on: Oct 11, 2021
Published on: Feb 12, 2022
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Petra Hečková, Vojtěch Bareš, David Stránský, Michal Sněhota, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.