Have a personal or library account? Click to login
3D numerical modeling of flow characteristics in an open channel having in-line circular vegetation patches with varying density under submerged and emergent flow conditions Cover

3D numerical modeling of flow characteristics in an open channel having in-line circular vegetation patches with varying density under submerged and emergent flow conditions

Open Access
|Feb 2022

References

  1. Ali, S., 2013. Investigation for required number of patches for numerical modelling in an open channel with checker. Life Sci. J., 10, 220–226.
  2. Ali, Y., Maqsood, F., Abdul-Rab, U., Shah., 2018. Impact of vegetation pattern on flow behavior in an open channel. Research project. Department of Civil Engineering, University of Engineering and Technology, Taxila, Pakistan.
  3. Anjum, N., Ghani, U., Pasha, G.A., Latif, A., Sultan, T., 2018a. To investigate the flow structure of discontinuous vegetation patches of two vertically different layers in an open channel. Water, 10, 1, 75.10.3390/w10010075
  4. Anjum, N., Ghani, U., Pasha, G.A., Rashid, M.U, Latif, A., Yousaf, M.Z., 2018b. Reynolds stress modeling of flow characteristics in a vegetated rectangular open channel. Arab. J. Sci. Eng., 43, 10, 5551–5558.10.1007/s13369-018-3229-8
  5. Barrios-Piña, H., Hermilo, R., Clemente, R.C., Carlos, C.C., 2014. Multilayer numerical modeling of flows through vegetation using a mixing-length turbulence model. Water, 6, 7, 2084–2103.10.3390/w6072084
  6. Bertoldi, W., Annunziato S., Stefano, T., Marco, T., David, V., Simona, F., 2014. Modeling vegetation controls on fluvial morphological trajectories. Geophys. Res. Lett., 41, 20, 7167–7175.10.1002/2014GL061666
  7. Bouma, T.J.Ã., Van Duren, L.A., Temmerman, S., Claverie, T., Ysebaert, T., Herman, P.M.J., 2007. Spatial flow and sedimentation patterns within patches of epibenthic structures: combining field, flume and modelling experiments. Cont. Shelf Res., 27, 8, 1020–1045.10.1016/j.csr.2005.12.019
  8. Cheng, N.S., 2011. Representative roughness height of submerged vegetation. Water Resour. Res., 47, 8, 1–18.10.1029/2011WR010590
  9. Chen, Z., Ortiz, A., Zong, L., Nepf, H., 2012. The wake structure behind a porous obstruction and its implications for deposition near a finite patch of emergent vegetation. Water Resour. Res., 48, 9, 9517.
  10. Dan, N., Iehisa, N., Hiroji, N., 1996. Hydrodynamic behaviour of partly vegetated open channels. J. Hydraul. Eng., 122, 11, 625–633.10.1061/(ASCE)0733-9429(1996)122:11(625)
  11. Devi, T.B., Kumar, B., 2016. Flow characteristics in an alluvial channel covered partially with submerged vegetation. Ecol. Eng., 94, 478–492.10.1016/j.ecoleng.2016.06.018
  12. Dey, S., 2014. Turbulence in open-channel flows. Fluvial hydrodynamics, GeoPlanet: Earth and Planetary Sciences, 95–187.10.1007/978-3-642-19062-9_3
  13. Dieter, W.S.A., Meire, J., Kondziolka, M., Nepf, H.M., 2014. Interaction between neighboring vegetation patches: impact on flow and deposition., Water Resour. Res., 50, 5, 3809–3825.10.1002/2013WR015070
  14. Ghisalberti, M., Nepf, H.M., 2004. The limited growth of vegetated shear layers. Water Resour. Res., 40, 1–12.10.1029/2003WR002776
  15. Ghani, U., Anjum, N., Pasha, G.A., Ahmad, M., 2019a. Investigating the turbulent flow characteristics in an open channel with staggered vegetation patches. River Res. Appl., 35, 7, 966–978.10.1002/rra.3460
  16. Ghani, U., Anjum, N., Pasha, G.A. Ahmad, M., 2019b. Numerical investigation of the flow characteristics through discontinuous and layered vegetation patches of finite width in an open channel. Environ. Fluid Mech., 19, 1469–1495.10.1007/s10652-019-09669-x
  17. Goharzadeh, A., Molki, A., 2014. Measurement of fluid velocity development behind a circular cylinder using particle image velocimetry (PIV). European Journal of Physics, 36, 1, 015001.10.1088/0143-0807/36/1/015001
  18. Hao, W., Tang, H., Yuan, S., Shengqi, L.V., Zhao, X., 2014. An Experimental study of the incipient bed shear stress partition. Science China Technological Sciences, 57, 1165–1174.10.1007/s11431-014-5549-6
  19. Huai, W., Wang, W., Hu, Y., Zeng, Y., Yang, Z., 2014. Analytical model of the mean velocity distribution in an open channel with double-layered rigid vegetation. Adv. Water Resour., 69, 106–113.10.1016/j.advwatres.2014.04.001
  20. Jalonen, J., Juha, J., Pekka, J., Virtanen, M.V., Kurkela, M., Hyyppä, H., 2015. Determining characteristic vegetation areas by terrestrial laser scanning for floodplain flow modeling. Water, 7, 2, 420–437.10.3390/w7020420
  21. Jordanova, A.A., James, C.S., 2003. Experimental study of bed load transport through emergent vegetation. J. Hydraul. Eng., 129, 6, 474–478.10.1061/(ASCE)0733-9429(2003)129:6(474)
  22. Kamel, B., Ilhem, K., Ali, F., Abdelbaki, D., 2014. 3D simulation of velocity profile of turbulent flow in open channel with complex geometry. Phys. Procedia., 55, 119–128.10.1016/j.phpro.2014.07.018
  23. Kouwen, N., Unny, E., 1973. Flexible roughness in an open channel. J. Hydraulics Division., 99, 5, 713–728.10.1061/JYCEAJ.0003643
  24. Leonard, L.A., Mark, E.L., 1995. Flow hydrodynamics in tidal marsh canopies. Limnol. Oceanogr., 40, 8, 1474–1484.10.4319/lo.1995.40.8.1474
  25. Li, W., Wang, D., Jiao, J., Yang, K., 2019. Effects of vegetation patch density on flow velocity characteristics in an open channel. J. Hydrodyn., 31, 1052–1059.10.1007/s42241-018-0086-6
  26. López, F., García, M., 1998. Open-channel flow through simulated vegetation: turbulence modeling and sediment transport. Water Resour. Res., 34, 9, 2341–2352.10.1029/98WR01922
  27. Maltese, A., Eleanor, E.C., Andrew, A., Folkard, M., Giuseppe, G., Ciraolo, G., Giovambattista, G.L., 2007. Laboratory measurements of flow and turbulence in discontinuous distributions of ligulate seagrass. J. Hydraul. Eng., 133, 7, 750–760.10.1061/(ASCE)0733-9429(2007)133:7(750)
  28. Neary, V.S., Constantinescu, S.G., Bennett, S.G., Diplas, P., 2012. Effects of vegetation on turbulence, sediment transport, and stream morphology. J. Hydraul. Eng., 138, 765–776.10.1061/(ASCE)HY.1943-7900.0000168
  29. Nepf, H.M., 1999. Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour. Res., 35, 2, 479–489.10.1029/1998WR900069
  30. Nepf, H.M., Vivoni, E.R., 2000. Flow structure in depth-limited, vegetated flow. J. Geophys. Res. Oceans, 105, C12, 28547–28557.10.1029/2000JC900145
  31. Neumeier, U., 2007. Velocity and turbulence variations at the edge of saltmarshes. Cont. Shelf Res., 27, 8, 1046–1059.10.1016/j.csr.2005.07.009
  32. Nishino, T., Graham, T.R., Xin, Z., 2007. Vortex shedding from a circular cylinder near a moving ground. Phys. Fluids., 19, 1–13.10.1063/1.2710273
  33. Pasha, G.A., Tanaka, N., 2016. Effectiveness of finite length inland forest in trapping tsunami-borne wood debris. J. Earthq. Tsunami, 10, 2, 1–26.10.1142/S1793431116500081
  34. Pasha, G.A., Tanaka, N., Yagisawa, J., Achmad, F.N., 2018. Tsunami mitigation by combination of coastal vegetation and a backward-facing step. Coast. Eng. J., 60, 1, 1–22.10.1080/21664250.2018.1437014
  35. Prasad, Y., Tang, Q., 2015. Soil bioengineering application for flood hazard minimization in the foothills of siwaliks, Nepal. Ecol. Eng., 74, 458–462.10.1016/j.ecoleng.2014.11.020
  36. Rajaratnam, N., 2006. Review of turbulent jets and plumes – A Lagrangian approach by Joseph H.W. Lee and Vincent H. Chu. Kluwer Academic Publishers, Dordrecht, The Netherlands; 2003; 408 pp. Price: $135. J. Hydraul. Eng., 132, 8, 873. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:8(873)10.1061/(ASCE)0733-9429(2006)132:8(873)
  37. Raupach, M.R., Finnigan, J., Brunet, Y., 1996. Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorology, 78, 351–382.10.1007/BF00120941
  38. Righetti, M., Armanini, A., 2002. Flow resistance in open channel flows with sparsely distributed bushes. J. Hydrol., 269, 1–2, 55–64.10.1016/S0022-1694(02)00194-4
  39. Rominger, J.T., Nepf, H.M., 2011. Flow adjustment and interior flow associated with a rectangular porous obstruction. J. Fluid Mech., 680, 636–659.10.1017/jfm.2011.199
  40. Shucksmith, J.D., Boxall, J.B., Guymer, I., 2010. Effects of emergent and submerged natural vegetation on longitudinal mixing in open channel flow. Water Resour. Res., 46, 4, 1–14.10.1029/2008WR007657
  41. Suk, H., Nabi, M., Kimura, I., Shimizu. Y., 2015. Advances in water resources computational modeling of flow and morphodynamics through rigid-emergent vegetation. Adv. Water Resour., 84, 64–86.10.1016/j.advwatres.2015.07.020
  42. Takemura, T., Tanaka, N., 2007. Flow structures and drag characteristics of a colony-type emergent roughness model mounted on a flat plate in uniform flow. J. Fluid Dyn. Res., 39, 9–10.10.1016/j.fluiddyn.2007.06.001
  43. Tanaka, T., Uchida, E., Yokota, T., Hagihara, A., Takeda, Y., 1993. Comparison between water absorption rate and sap-flow rate measured using the improved stem heat-balance method. J. Jpn. For. Soc., 76, 554–557.
  44. Tatsuno, M., Amamoto, H., Ishi, K., 1998. Effects of interference among three equidistantly arranged cylinders in a uniform flow. J. Fluid Dyn. Res., 22, 5, 297–315.10.1016/S0169-5983(97)00040-3
  45. Wang, C., Yu, J.Y., Wang, P.F., Guo, P.C., 2009. Flow structure of partly vegetated open-channel flows with eelgrass. J. Hydrodyn., 21, 3, 301–307.10.1016/S1001-6058(08)60150-X
  46. Wang, Z., Lu, J., Yuan, Y., Huang, Y., Feng, J., Li, R., 2019. Experimental study on the effects of vegetation on the dissipation of supersaturated total dissolved gas in flowing water. Int. J. Environ. Res. Public Health, 16, 13, 2256.
  47. Xiaohui, S., Li, C.W., 2002. Large eddy simulation of free surface turbulent flow in partly vegetated open channels. Int. J. Numer. Methods Fluids, 39, 10, 919–937.10.1002/fld.352
  48. Xiaonan, T., Knight, D.W., 2009. Lateral distributions of streamwise velocity in compound channels with partially vegetated floodplains. Sci. China Technol. Sci., 52, 3357–3362.10.1007/s11431-009-0342-7
  49. Yu, L.H., Zhan, J.M., Li, Y.S., 2013. Numerical investigation of drag force on flow through circular array of cylinders. J. Hydrodyn., 25, 3, 330–338.10.1016/S1001-6058(11)60371-6
  50. Zeng, C., Li, C.W., 2014. Measurements and modeling of open-channel flows with finite semi-rigid vegetation patches. Environ. Fluid Mech., 14, 113–134.10.1007/s10652-013-9298-z
  51. Zhang, H., Yang, J.M., Xiao, L.F., Lü, H.N., 2015. Large-eddy simulation of the flow past both finite and infinite circular cylinders at Re = 3900. J. Hydrodyn., 27, 2, 195–203.10.1016/S1001-6058(15)60472-3
  52. Zhang, L.Z., 2013. Heat and mass transfer across a hollow fiber membrane bundle. In: Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts. Academic Press, pp. 181–232.10.1016/B978-0-12-407782-9.00007-1
  53. Zhang, M., Li, C.W., Shen, Y., 2013. Depth-averaged modeling of free surface flows in open channels with emerged and submerged vegetation. Appl. Math. Model., 37, 540–553.10.1016/j.apm.2012.02.049
  54. Zhao, F., Huai, W., 2016. Hydrodynamics of discontinuous rigid submerged vegetation patches in open-channel flow. J. Hydro-Environ. Res., 12, 148–160.10.1016/j.jher.2016.05.004
  55. Zhan, J., Hu, W., Cai, W., Gong, Y., 2017. Numerical simulation of flow through circular array of cylinders using porous media approach with non-constant local inertial resistance coefficient. J. Hydrodyn., 29, 1, 168–171.10.1016/S1001-6058(16)60728-X
  56. Zong, L., Nepf, H., 2011. Vortex development behind a finite porous obstruction in a channel. J. Fluid Mech., 691, 368–391.10.1017/jfm.2011.479
  57. Zhenqun, W.U., Guobiao, O.U., Yifei, R.E.N., Hui, J.I.N., 2020. Numerical investigation on the drag characteristics of supercritical water flow past a sphere. Sci. China Technol. Sci., 63, 1509–1519.10.1007/s11431-020-1684-2
DOI: https://doi.org/10.2478/johh-2021-0034 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 128 - 144
Submitted on: Jan 22, 2021
Accepted on: Jul 1, 2021
Published on: Feb 12, 2022
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Hasnain Tariq, Usman Ghani, Naveed Anjum, Ghufran Ahmed Pasha, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.