Have a personal or library account? Click to login
Warming Vistula River – the effects of climate and local conditions on water temperature in one of the largest rivers in Europe Cover

Warming Vistula River – the effects of climate and local conditions on water temperature in one of the largest rivers in Europe

Open Access
|Feb 2022

References

  1. Allan, J.D., Castillo, M.M., 2007. Stream Ecology: Structure and Function of Running Waters. 2nd Ed. Chapman and Hall, New York, USA.
  2. Arnell, N.W., Gosling, S.N., 2016. The impacts of climate change on river flood risk at the global scale. Climatic Change, 134, 387–401.10.1007/s10584-014-1084-5
  3. Arora, R., Tockner, K., Venohr, M., 2016. Changing river temperatures in northern Germany: trends and drivers of change. Hydrological Processes, 30, 17, 3084–3096.10.1002/hyp.10849
  4. Baranowski, R., Fryzlewicz, P., 2019. Wild Binary Segmentation for Multiple Change-Point Detection. https://cran.r-project.org/web/packages/wbs/wbs.pdf. R package version 1.4.
  5. Bartholow, J.M., 2005. Recent water temperature trends in the lower Klamath River, California. North American Journal of Fisheries Management, 25, 1, 152–162.10.1577/M04-007.1
  6. Basarin, B., Lukić, T., Pavić, D., Wilby, R.L., 2016. Trends and multi-annual variability of water temperatures in the river Danube, Serbia. Hydrological Processes, 30, 18, 3315.10.1002/hyp.10863
  7. Bates, B.C., Kundzewicz, Z.W., Wu, S., Palutikof, J.P., 2008. Climate Change and Water. Technical paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat. Intergovernmental Panel on Climate Change, Geneva.
  8. Bonacci, O., Trninić, D., Roje-Bonacci, T., 2008. Analysis of the water temperature regime of the Danube and its tributaries in Croatia. Hydrological Processes, 22, 7, 1014–1021.10.1002/hyp.6975
  9. Caissie, D., St-Hilaire, A., El-Jabi, N., 2004. Prediction of water temperatures using regression and stochastic models. In: Proceedings of the 57th Canadian Water Resources Association Annual Congress, Montreal, QC, Canada, 16–18 June 2004. Canadian Water Resources Association, Ottawa, ON, Canada.
  10. Caissie, D., 2006. The thermal regime of rivers: a review. Freshwater Biology, 51, 1389–1406.10.1111/j.1365-2427.2006.01597.x
  11. Caissie, D., El-Jabi N., Satish M.G., 2001. Modelling of maximum daily water temperatures in a small stream using air temperature. J. Hydrol., 251, 14–28.10.1016/S0022-1694(01)00427-9
  12. Caldwell, P., Segura, C., Laird, S.G., Sun, G., McNulty, S.G., Sandercock, M., Boggs, J., Vose, J.M., 2015. Short-term stream water temperature observations permit rapid assessment of potential climate change impacts. Hydrological Processes, 29, 2196–2211.10.1002/hyp.10358
  13. Cheval, S., Birsan, M.-V., Dumitrescu, A., 2014. Climate variability in the Carpathian Mountains Region over 1961-2010. Global and Planetary Change, 118, 85–96.10.1016/j.gloplacha.2014.04.005
  14. Choiński, A., Ptak, M., Volchak, A., Kirvel, I., Valiuškevičius, G., Parfomuk, S., Kirvel, P., Sidak, S., 2021. Effect of air temperature increase on changes in thermal regime of the Oder and Neman rivers flowing into the Baltic Sea. Atmosphere, 12, 498, 1–15.10.3390/atmos12040498
  15. Ciołkosz, A., 1975. Zastosowanie długofalowego promieniowania podczerwonego w badaniach termalnego zanieczyszczenia rzek. Prace Instytutu Geodezji i Kartografii, 22, 2, 51, 29–73.
  16. Dynowska, I., 1971. Typy reżimów rzecznych w Polsce. Zesz. Nauk. UJ, Prace Geograficzne, 28.
  17. Eby, L., Helmy, O., Holsinger, L.M., Young, M.K., 2014. Evidence of climate-induced range contractions in bull trout salvelinus confluentus in a rocky mountain watershed, USA. PLoS ONE, 9, e98812.10.1371/journal.pone.0098812404580024897341
  18. Fryzlewicz, P., 2014. Wild binary segmentation for multiple change-point detection. Annals of Statistics, 42, 6, 2243–2281.10.1214/14-AOS1245
  19. Gacka-Grzesikiewicz, E. (Ed.) 1995. Korytarz ekologiczny doliny Wisły. Stan – Funkcjonowanie-Zagrożenia. Fundacja IUCN Poland, Warszawa. http://fs.siteor.com/bocian/files/www/biblioteka/ksiazki/korytarz_ekologiczny_doliny_wisly.pdf?1292203248 (accessed on 10.01.2021).
  20. Gilbert, R.O., 1987. Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold Co., New York, NY, USA, 320 p.
  21. Gołek, J., 1987. Zjawiska lodowe na rzekach i jeziorach. In: Atlas hydrologiczny Polski. IMiGW, Wyd. Geol, Warszawa.
  22. Goulden, M., Conway, D., Persechino, A., 2009. Adaptation to climate change in international river basins in Africa. Hydrological Sciences Journal, 54, 805–828.10.1623/hysj.54.5.805
  23. Graf, R., 2019. A multifaceted analysis of the relationship between daily temperature of river water and air. Acta Geophysica, 67, 905–920.10.1007/s11600-019-00285-3
  24. Graf, R., Wrzesiński, D., 2020. Detecting patterns of changes in river water temperature in Poland. Water, 12, 5, 1327.10.3390/w12051327
  25. Hannah, D.M., Malcolm, I.A., Soulsby, C., Youngson, A.F., 2004. Heat exchanges and temperatures within a salmon spawning stream in the Cairngorms, Scotland: Seasonal and subseasonal dynamics. River Research and Applications, 20, 635–652.10.1002/rra.771
  26. IPCC, 2018. SRCCL. Climate Change and Land. IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse gas fluxes in Terrestrial Ecosystems. Summary for Policymakers. Available online: https://www.ipcc.ch/site/assets/uploads/2019/08/4.-SPM_Approved_Microsite_FINAL.pdf (accessed on 10.01.2021).
  27. Jackson, M.C., Loewen, C.J.G., Vinebrooke, R.D., Chimimba, C.T., 2016. Net effects of multiple stressors in freshwater ecosystems: A meta-analysis. Glob. Chang. Biol., 22, 180–189.10.1111/gcb.13028
  28. Jones, L.A., Muhlfeld, C.C., Marshall, L.A., 2017. Projected warming portends seasonal shifts of stream temperatures in the Crown of the Continent Ecosystem, USA and Canada. Climatic Change, 144, 4, 641–655.10.1007/s10584-017-2060-7
  29. Kajtazi, B.S., Floqi, T., 2021. Thermo Power Plant “Kosovo B”–A pollution source for Sitnica River. European Journal of Engineering and Technology, 6, 3.10.24018/ejers.2021.6.3.2379
  30. Kaushal, S.S., G.E. Likens, N.A. Jaworski, M.L., Pace, A.M., Sides, D., Seekell, K.T., Belt, D.H., Secor, Wingate, R.L., 2010. Rising stream and river temperatures in the United States. Frontiers in Ecology and the Environment, 8, 461–466.10.1890/090037
  31. Kendall, M.G., Stuart, A., 1968. The Advanced Theory of Statistics, 3. Charles Griffin Ltd., London, UK.10.2307/2986781
  32. Kozłowska, M., Kozłowski, I., 1988. Szczegółowa Mapa Geologiczna Polski 1:50000, 281- Arkusz Unisław. Wydawnictwa Geologiczne, Warszawa.
  33. Krawczyński, J., 2005. Baza danych GIS Mapy Hydrogeologicznej Polski 1:50000, 281- Unisław (N-34-97-B). Pierwszy poziom wodonośny. Występowanie i hydrodynamika. PIG&MŚ, Warszawa.
  34. Langan, S.J., Johnston, L., Donaghy, M.J., Youngson, A.F., Hay, D.W., Soulsby, C., 2001. Variation in river water temperatures in an upland stream over a 30-year period. Science of the Total Environment, 265, 195–207.10.1016/S0048-9697(00)00659-8
  35. Latkovska, I., Apsite, E., 2016. Long-term changes in the water temperature of rivers in Latvia. Proceedings of the Latvian Academy of Sciences, Section B: Natural, Exact, and Applied Sciences, 70, 2, 78–87.10.1515/prolas-2016-0013
  36. Langan. S.J, Johnston, L., Donaghy, M.J., Youngson, A.F., Hay, D.W., Soulsby, C., 2001. Variation in river water temperatures in an upland stream over a 30-year period. Science of the Total Environment, 265, 195–207.10.1016/S0048-9697(00)00659-8
  37. Letcher, B.H., Hocking, D.J., O’Neil, K., Whiteley, A.R., Nislow, K.H., O’Donnel, M.J., 2016. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags. Peer J., 4, e1727.10.7717/peerj.1727478273426966662
  38. Loinaz, M.C., Davidsen, H.K., Butts, M., Bauer-Gottwein, P., 2013. Integrated flow and temperature modeling at the catchment scale. Journal of Hydrology, 495, 238–251.10.1016/j.jhydrol.2013.04.039
  39. Łaszewski, M., 2014. Metody określania związków temperatury wody rzecznej i temperatury powietrza na przykładzie rzeki Świder. Prace Geograficzne, 136, 45–60.
  40. Łaszewski, M.A., 2020. The effect of environmental drivers on summer spatial variability of water temperature in Polish lowland watercourses. Environmental Earth Sciences, 79, 244.10.1007/s12665-020-08981-w
  41. Łukaszewicz, J., Graf, R., 2020. The variability of ice phenomena on the rivers of the Baltic coastal zone in the Northern Poland. Journal of Hydrology and Hydromechanics, 68, 38–50.10.2478/johh-2019-0025
  42. MacDonald, R.J., Boon, S., Byrne, J.M., 2014. A process-based stream temperature modelling approach for mountain regions. Journal of Hydrology, 511, 920–931.10.1016/j.jhydrol.2014.02.009
  43. Magnuson, J.J., Robertson, D.M., Benson, B.J., Wynne, R.H., Livingstone, D.M., Arai, T., Assel, R.A., Barry, R.G., Card, V., Kuusisto, E., et al. 2000. Historical trends in lake and river ice cover in the Northern Hemisphere. Science, 289, 1743–1746.10.1126/science.289.5485.1743
  44. Marszelewski, W., Strzyżewska-Pietrucień, I., 2009, Temperatura wody dolnej Wisły i jej wieloletnie zmiany. In: Jankowski, A.T., Absalon, D., Machowski, R., Ruman, M. (Eds.): Przeobrażenia stosunków wodnych w warunkach zmieniającego się środowiska. Wydział Nauk o Ziemi Uniwersytetu Śląskiego, Sosnowiec, pp. 197–209.
  45. Marszelewski, W., Pius, B., 2016. Long-term changes in temperature of river waters in the transitional zone of the temperate climate: a case study of Polish rivers. Hydrological Sciences Journal, 61, 8, 1430–1442.10.1080/02626667.2015.1040800
  46. Michel, A., Brauchli, T., Lehning, M., Schaefli, B., Huwald, H., 2020. Stream temperature and discharge evolution in Switzerland over the last 50 years: annual and seasonal behaviour. Hydrology and Earth System Sciences, 24, 1, 115–142.10.5194/hess-24-115-2020
  47. Mohseni, O., Stefan H.G., Eaton, J.G., 2003. Global warming and potential changes in fish habitat in U.S. streams. Climate Change, 59, 389–409.10.1023/A:1024847723344
  48. Monitor Polski, 2017. Monitoring zanieczyszczenia termicznego zrzutu ciepłej wody z Elektrowni Połaniecprzepływ niski/średni, Zakład Badań Ekologicznych, Kraków, 49, 549.
  49. Morrill, J.C., Bales, R.C., Conklin, M.H., 2005. Estimating stream temperature from air temperature: Implications for future water quality. Journal of Environmental Engineering, 131, 1, 139–146.10.1061/(ASCE)0733-9372(2005)131:1(139)
  50. Olsson, T., Jakkila, J., Veijalainen, N., Backman, L., Kaurola, J., Vehviläinen, B., 2015. Impacts of climate change on temperature, precipitation and hydrology in Finland—studies using bias corrected regional climate model data. Hydrology and Earth System Sciences, 19, 3217–3238.10.5194/hess-19-3217-2015
  51. O’Reilly, C.M., Sharma, S., Gray, D.K., Hampton, S.E., Read, J.S., et al., 2015. Rapid and highly variable warming of lake surface waters around the globe. Geophysical Research Letters, 42, 10773–10781.10.1002/2015GL066235
  52. Pawłowski, B., Gorączko, M., Szczerbińska, A., 2017. Zjawiska lodowe na rzekach w Polsce. In: Jokiel, P., Marszelewski, W., Pociask-Karteczka, J. (Eds.): Hydrologia Polski. Wydawnictwo Naukowe PWN, Warszawa, Poland, pp. 195–200.
  53. Pedersen, N.L., Sand-Jensen, K., 2007. Temperature in lowland Danish streams: Contemporary patterns, empirical models and future scenarios. Hydrological Processes, 21, 3, 348–358.10.1002/hyp.6237
  54. Pekarova, P., Halmova, D., Miklanek, P., Onderka, M., Pekar, J., Skoda, P., 2008. Is the water temperature of the Danube River at Bratislava, Slovakia, rising? Journal of Hydrometeorology, 9, 5, 1115–1122.10.1175/2008JHM948.1
  55. Pilgrim, J.M., Fang, X., Stefan, H.G., 1998. Stream temperature correlations with air temperatures in Minnesota: implications for climate warming. Journal of the American Water Resources Association, 34, 5, 1109–1121.10.1111/j.1752-1688.1998.tb04158.x
  56. Pohle, I., Helliwell, R., Aube, C., Gibbs, S., Spencer, M., Spezia, L., 2019. Citizen science evidence from the past century shows that Scottish rivers are warming. Science of the Total Environment, 659, 53–65.10.1016/j.scitotenv.2018.12.32530594861
  57. Policht-Latawiec, A., Kanownik, W., Jurek, A., 2016. The effect of cooling water discharge from the power station on the quality of the Skawinka River water. Carpathian Journal of Earth and Environmental Sciences, 11, 2, 427–435.
  58. Ptak, M., Nowak, B., 2016. Variability of oxygen-thermal conditions in selected lakes in Poland. Ecological Chemistry and Engineering S, 23,4, 639–650.10.1515/eces-2016-0045
  59. Ptak, M., Nowak, B., 2017. Zmiany temperatury wody w Prośnie w latach 1965-2014, Woda-Środowisko-Obszary Wiejskie, 17, 3, 101–112.
  60. Ptak, M., 2018. Long-term temperature fluctuations in rivers of the Fore-Sudetic region in Poland. Geografie, 123, 3, 279–294.10.37040/geografie2018123030279
  61. Ptak, M., Sojka, M., Choiński, A., Nowak, B. 2018. Effect of environmental conditions and morphometric parameters on surface water temperature in Polish lakes. Water, 10, 580.10.3390/w10050580
  62. Ruman, M., Absalon, D., Matysik, M., 2013. Innowacyjne rozwiązania w monitoringu jakości wód powierzchniowych. Ekoinnowacje w ochronie środowiska 2013, pp. 72–82.
  63. Salmaso, F., Quadroni, S., Gentili, G., Crosa, G., 2017. Thermal regime of a highly regulated Italian River (Ticino River) and implications for aquatic communities. Journal of Limnology, 76, 1, 23–33.10.4081/jlimnol.2016.1437
  64. Skolasińska, K., Nowak, B., 2018. What factors affect the suspended sediment concentrations in rivers? A study of the upper Warta River (Central Poland). River Research and Applications 34,2, 112–123.10.1002/rra.3234
  65. Soto, B., 2018. Climate-induced changes in river water temperature in North Iberian Peninsula. Theoretical and Applied Climatology, 133, 1–2, 101–112.10.1007/s00704-017-2183-9
  66. Stajkowski, S., Zeynoddin, M., Farghaly, H., Gharabaghi, B., Bonakdari, H., 2020 A methodology for forecasting dissolved oxygen in urban streams. Water, 12, 9, Article number: 2568.10.3390/w12092568
  67. Šarauskiene, D., Akstinas, V., Kriaučiūniene, J., Jakimavičius, D., Bukantis, A., Kažys, J., Povilaitis, A., Ložys, L., Kesminas, V., Virbickas, T., Pliuraite, V., 2018. Projection of Lithuanian river runoff, temperature and their extremes under climate change. Hydrology Research, 49, 2, 344–362.10.2166/nh.2017.007
  68. Taniwaki, R.H., Piggott, J.J., Ferraz, S.F., Matthaei, C.D., 2017. Climate change and multiple stressors in small tropical streams. Hydrobiologia, 793, 41–53.10.1007/s10750-016-2907-3
  69. Tomaszewski, E. 2007. Hydrological droughts in central Poland - temporal and spatial patterns. Geographia Polonica, 80, 2, 117–123.
  70. Tomczyk, A.M., 2016. Impact of atmospheric circulation on the occurrence of heat waves in southeastern Europe. Időjárás, 120, 4, 395–414.
  71. Tomczyk, A.M., Sulikowska, A., 2018. Heat waves in lowland Germany and their circulation-related conditions. Meteorology and Atmospheric Physics, 130, 5, 499–515.10.1007/s00703-017-0549-2
  72. Tomczyk, A., Bednorz, E., Szyga-Pluta, K., 2021. Changes in air temperature and snow cover in winter in Poland. Atmosphere, 12, 1, 68.10.3390/atmos12010068
  73. Van Vliet, M.T.H., Ludwig, F., Zwolsman, J.J.G., Weedon, G.P., Kabat, P., 2011. Global river temperatures and sensitivity to atmospheric warming and changes in river flow. Water Resources Research, 47, 2, Article number: W02544.10.1029/2010WR009198
  74. Van Vliet, M.T.H., Franssen, W.H.P., Yearsley, J.R., Ludwig, F., Haddeland, I., Lettenmaier, D.P., Kabat, P., 2013. Global river discharge and water temperature under climate change. Global Environmental Change, 23, 2, 450–464.10.1016/j.gloenvcha.2012.11.002
  75. Wawrzyniak, V., Allemand, P., Bailly, S., Lejot, J., Piégay, H., 2017. Coupling LiDAR and thermal imagery to model the effects of riparian vegetation shade and groundwater inputs on summer river temperature. Science of the Total Environment, 592, 616–626.10.1016/j.scitotenv.2017.03.01928318696
  76. Webb, B.W., Clack, P.D., Walling, D.E. 2003. Water-air temperature relationships in a Devon river system and the role of flow. Hydrological Processes, 17, 15, 3069–3084.10.1002/hyp.1280
  77. Webb, B.W., Nobilis, F., 2007. Long-term changes in river temperature and the influence of climatic and hydrological factors. Hydrological Sciences Journal, 52, 74–85.10.1623/hysj.52.1.74
  78. Williamson, R.J., Entwistle, N.S., Collins, D.N., 2019. Meltwater temperature in streams draining Alpine glaciers. Science of The Total Environment, 658, 777–786.10.1016/j.scitotenv.2018.12.21530583173
  79. Woolway, R.I., Dokulil, M.T., Marszelewski, W., Schmid, M., Bouffard, D., Merchant, C.J., 2017. Warming of Central European lakes and their response to the 1980s climate regime shift. Climatic Change, 142, 3–4, 505–520.10.1007/s10584-017-1966-4
  80. Wrzesiński, D., 2013. Entropy of River Flows in Poland. Bogucki, Poznań.
  81. Wrzesiński, D., Sobkowiak, L., 2020. Transformation of the flow regime of a large allochthonous river in Central Europe - An example of the Vistula River in Poland. Water, 12, 2, 507.10.3390/w12020507
  82. Zhang, X.J., Tang, Q.H., Pan, M. et al., 2014. A long-term land surface hydrologic fluxes and states dataset for China. Journal of Hydrometeorology, 15, 2067–2084.10.1175/JHM-D-13-0170.1
DOI: https://doi.org/10.2478/johh-2021-0032 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 1 - 11
Submitted on: Mar 1, 2021
Accepted on: Jul 18, 2021
Published on: Feb 12, 2022
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Mariusz Ptak, Mariusz Sojka, Renata Graf, Adam Choiński, Senlin Zhu, Bogumił Nowak, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.