Have a personal or library account? Click to login
Biological factors impacting hydrological processes: Pecularities of plants and biological soil crusts Cover

Biological factors impacting hydrological processes: Pecularities of plants and biological soil crusts

Open Access
|Nov 2021

References

  1. Balashov, E., Buchkina, N.P., Šimanský, V., Horák, J., 2021. Effects of slow and fast pyrolysis biochar on N2O emissions and water availability of two soils with high water-filled pore space. J. Hydrol. Hydromech., 69, 4, 467–474.10.2478/johh-2021-0024
  2. Belnap, J., Lange, O.L. (Eds.), 2003. Biological Soil Crusts: Structure, Function, and Management. Revised 2nd Printing. Springer Publisher, Berlin.10.1007/978-3-642-56475-8
  3. Beysens, D., 2016. Estimating dew yield worldwide from a few meteo data. Atmos. Res., 167, 146–155.10.1016/j.atmosres.2015.07.018
  4. Callaway, R.M., 1998. Are positive interactions species-specific? Oikos, 82, 202–207.10.2307/3546931
  5. Cerdà, A., 1997. The effect of patchy distribution of Stipa tenacissima L. on runoff and erosion. J. Arid Environ., 36, 37–51.10.1006/jare.1995.0198
  6. Chenu, C., 1993. Clay- or sand- polysaccharide associations as models for the interface between micro-organisms and soil: water related properties and microstructure. Geoderma, 56, 143–156.10.1016/B978-0-444-81490-6.50016-9
  7. Corenblit, D., Baas, A.C.W., Bornette, G., Darrozes, J., Delmotte, S., Francis, R.A., Gurnell, A.M., Julien, F., Naiman, R.J., Streiger, J., 2011. Feedbacks between geomorphology and biota controlling Earth surface processes and landforms: A review of foundation concepts and current understanding. Earth-Sci. Rev., 106, 307–331. https://doi.org/10.1016/j.earscirev.2011.03.00210.1016/j.earscirev.2011.03.002
  8. Doerr, S.H., Shakesby, R.A., Walsh, R.P.D., 2000. Soil water repellency: its causes, characteristics and hydrogeomorphological significance. Earth-Sci. Rev., 51, 33–65. https://doi.org/10.1016/S0012-8252(00)00011-810.1016/S0012-8252(00)00011-8
  9. Drahorad, S.L., Felde, V.J.M.N.L., Ellerbrock, R.H., Henss, A., 2021. Water repellency decreases with increasing carbonate content and pH for different biocrust types on sand dunes. J. Hydrol. Hydromech., 69, 4, 369–377.10.2478/johh-2021-0022
  10. Ehlers, W., Goss, M.J., 2003. Water Dynamics in Plant Production. CABI Publishing. Wallingford, UK.10.1079/9780851996943.0000
  11. Eldridge, D.J., Reed, S., Travers, SK., Bowker, M.A., Maestre, F.T., Ding, J., Havrilla, C., Rodriguez-Caballero, E., Barger, N., Weber, B., Antoninka, A., Belnap, J., Chaudhary, B., Faist, A., Ferrenberg, S., Huber-Sannwald, E., Malam Issa, O., Zhao, Y., 2020. The pervasive and multifacetal influence of biocrusts on water in the world’s drylands. Glob. Change Biol., 26, 6003–6014. https://doi.org/10.1111/gcb.1523210.1111/gcb.1523232729653
  12. Gillner, S., Vogt, J., Tharang, A., Dettmann, S., Roloff, A., 2015. Role of street trees in mitigating effects of heat and drought at highly sealed urban sites. Landscape Urban Plan., 143, 33–42. https://doi.org/10.1016/j.landurbplan.2015.06.00510.1016/j.landurbplan.2015.06.005
  13. Guan, H.J., Liu, X.Y., 2021. Biocrust effects on soil infiltrability in the Mu Us Desert: Soil hydraulic properties analysis and modeling. J. Hydrol. Hydromech., 69, 4, 378–386.10.2478/johh-2021-0026
  14. Harper, K.T., Marble, J.R., 1988. A role for nonvascular plants in management of arid and semiarid rangelands. In: Tuller, P.T. (Ed.): Applications of Plant Sciences to Rangeland Management and Inventory. Kluwer, Amsterdam, pp. 135–169.10.1007/978-94-009-3085-8_7
  15. Hazen, R.M., Papineau, D., Bleeker, W., Downs, R.T., Ferry, J.M., McCoy, T.J., Sverjensky, D.A., Yang, H., 2008. Mineral evolution. Am. Mineral., 93, 1693–1720.10.2138/am.2008.2955
  16. Heusinkveld, B.G., Berkowicz, S.M., Jacobs, A.F.G., Holtslag, A.A.M., Hillen, W.C.A.M., 2006. An automated microlysimeter to study dew formation and evaporation in arid and semiarid regions. J. Hydrometeorol., 7, 825–832.10.1175/JHM523.1
  17. Jančo, M., Mezei, P., Kvas, A., Danko, M., Sleziak, P., Minďáš, J., Škvarenina, J., 2021. Effect of mature spruce forest on canopy interception in subalpine conditions during three growing seasons. J. Hydrol. Hydromech., 69, 4, 436–446.10.2478/johh-2021-0025
  18. Kidron, G.J., 2009. The Effect of shrub canopy upon surface temperatures and evaporation in the Negev Desert. Earth Surf. Process. Landf., 34, 123–132. https://doi.org/10.1002/esp.170610.1002/esp.1706
  19. Kidron, G.J., 2019. The dual effect of sand-covered biocrusts on annual plants: Increasing cover but reducing individual plant biomass and fecundity. Catena, 182, 104120. https://doi.org/10.1016/j.catena.2019.10412010.1016/j.catena.2019.104120
  20. Kidron, G.J., 2021. The role of biocrust-induced exopolymeric matrix in runoff generation in arid and semiarid zones – a mini review. J. Hydrol. Hydromech., 69, 4, 360–368.10.2478/johh-2021-0028
  21. Kidron, G.J., Yaalon, D.H., Vonshak, A., 1999. Two causes for runoff initiation on microbiotic crusts: hydrophobicity and pore clogging. Soil Sci., 164, 18–27.10.1097/00010694-199901000-00004
  22. Kidron, G.J., Herrnstadt, I., Barzilay, E., 2002. The role of dew as a moisture source for sand microbiotic crusts in the Negev Desert, Israel. J. Arid Environ., 52, 517–533. https://doi.org/10.1006/jare.2002.101410.1006/jare.2002.1014
  23. Klanderud, K., 2008. Species-specific responses of an alpine plant community under simulated environmental change. J. Veg. Sci., 19, 363–372. https://doi.org/10.3170/2008-8-1837610.3170/2008-8-18376
  24. Lange, B., Luescher, P., Germann, P.F., 2009. Significance of tree roots for preferential infiltration in stagnic soils. Hydrol. Earth Syst. Sci., 13, 1809–1821.10.5194/hess-13-1809-2009
  25. Lázaro, R., Calvo-Cases, A., Arnau-Rosalén, E., Rubio, C., Fuentes, D., López-Canfín, C., 2021. Defining minimum runoff length allows for discriminating biocrusts and rainfall events. J. Hydrol. Hydromech., 69, 4, 387–399.10.2478/johh-2021-0029
  26. Leelamanie, D.A.L., Piyaruwan, H.I.G.S., Jayasinghe, P.K.S.C., Senevirathne, P.A.N.R., 2021. Hydrophysical characteristics in water-repellent tropical Eucalyptus, Pine, and Casuarina plantation forest soils. J. Hydrol. Hydromech., 69, 4, 447–455.10.2478/johh-2021-0027
  27. Lichner, L., Hallett, P.D., Orfánus, T., Czachor, H., Rajkai, K., Šir, M., Tesař, M., 2010. Vegetation impact on the hydrology of an aeolian sandy soil in a continental climate. Ecohydrology, 3, 413–420. https://doi.org/10.1002/eco.15310.1002/eco.153
  28. Lichner, L., Hallett, P.D., Drongova, Z., Czachor, H., Kovacik, L., Mataix-Solera, J., Homolák, M., 2013. Algae influence the hydrophysical parameters of a sand soil. Catena, 108, 58–68. https://doi.org/10.1016/j.catena.2012.02.01610.1016/j.catena.2012.02.016
  29. Littmann, T., Veste, M., 2008. Evapotranspiration, transpiration and dewfall. In: Breckle, S.-W, Yair, A.,Veste, M. (Eds.), Arid Dune Ecosystems: The Nizzana Sands in the Negev Desert, Ecological Studies 200, Springer, Berlin Heidelberg New York, pp. 183–200. https://doi.org/10.1007/978-3-540-75498-5_1310.1007/978-3-540-75498-5_13
  30. Miralles, D.G., Gash, J.H., Holmes, T.R.H., de Jeu, R.A.M., Dolman, A.J., 2010. Global canopy interception from satellite observations. J. Geophys. Res., 145, D16. https://doi.org/10.1029/2009JD01353010.1029/2009JD013530
  31. Muselli, M., Beysens, D. 2021. Mapping past, present and future dew and rain water resources for biocrust evolution in southern Africa. J. Hydrol. Hydromech., 69, 4, 400–420.
  32. Or, D., Phutane, S., Dechesne, A., 2007. Extracellular polymeric substances affecting pore-scale hydrologic conditions for bacterial activity in unsaturated soils. Vadose Zone J., 6, 298–305. https://doi.org/10.2136/vzj2006.008010.2136/vzj2006.0080
  33. Root, T.L., Price, J.T., Hall, K.R., Schneider, S.H., Rosenzweig, C., Pounds, J.A., 2003. Fingerprints of global warming on wild animals and plants. Nature, 421, 57–60.10.1038/nature0133312511952
  34. Simonin, K.A., Santiago, L.S., Dawson, T.E., 2009. Fog interception by Sequoia sempervirens (D. Don) crowns decouples physiology from soil water deficit. Plant Cell Environ., 32, 882–892. https://doi.org/10.1111/j.1365-3040.2009.01967.x10.1111/j.1365-3040.2009.01967.x19302173
  35. Thielen, S.M., Gall, C., Ebner, M., Nebel, M., Scholten, T., Seitz, S., 2021. Water’s path from moss to soil: A multi-methodological study on water absorption and evaporation of soil-moss combinations. J. Hydrol. Hydromech., 69, 4, 421–435.10.2478/johh-2021-0021
  36. Turbé, A., De Toni, A., Benito, P., Lavelle, P., Lavelle, P., Ruiz, N., van der Putten, W.H., Labouze, E., Mudgal, S., 2010. Soil biodiversity: Functions, threats and tools for policy makers. Technical Report 2010-049. European Communities. https://doi.org/10.2779/14571
  37. Vereecken, H., Schnepf, A., Hopmans, J.W., Javaux, M., Or, D., Roose, T., Vanderborght, J., Young, M.H., Amelung, W., Aitkenhead, M., Allison, S.D., Assouline, S., Baveye, P., Berli, M., Brüggemann, N., Finke, P., Flury, M., Galser, T., Govers, G., Ghezzehei, T., Hallett, P., Hendricks Franssen, H.J., Heppell, J., Horn, R., Hulsman, J.A., Jacques, D., Jonard, F., Kollet, S., Lafolie, F., Lamorski, K., Leitner, D., McBratney, A., Minasny, B., Montzka, C., Nowak, W., Pachepsky, Y., Padarian, J., Romano, N., Roth, K., Rothfuss, Y., Rowe, E.C., Schwen, A., Ŝimůnek, J., Tiktak, A., Van Dam, J., van der Zee, S.E.A.T.M., Vogel, H.J., Vrugt, J.A., Wöhling, T., Young, I.M., 2016. Modeling soil processes: Review, key challenges, and new perspectives. Vadose Zone J., 15, 1–57. https://doi.org/10.2136/vzj2015.09.013110.2136/vzj2015.09.0131
  38. Veste, M., Heusinkveld, B.G., Berkowicz, S.M., Breckle, S.-W., Littmann, T., Jacobs, A.F.G., 2008. Dew formation and activity of biological soil crusts. In: Breckle, S.-W., Yair, A., Veste, M. (Eds.). Arid Dune Ecosystems: The Nizzana Sands in The Negev Desert. Ecological Studies 200. Springer, Heidelberg, Germany, pp. 305–318. https://doi.org/10.1007/978-3-540-75498-5_2110.1007/978-3-540-75498-5_21
  39. Zabret, K., Šraj, M., 2021. Relation of influencing variables and weather conditions on the rainfall partitioning by birch and pine trees. J. Hydrol. Hydromech., 69, 4, 456–466.10.2478/johh-2021-0023
DOI: https://doi.org/10.2478/johh-2021-0031 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 357 - 359
Published on: Nov 15, 2021
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Giora J. Kidron, Maik Veste, Ľubomír Lichner, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.