Have a personal or library account? Click to login
Mapping past, present and future dew and rain water resources for biocrust evolution in southern Africa Cover

Mapping past, present and future dew and rain water resources for biocrust evolution in southern Africa

By: Marc Muselli and  Daniel Beysens  
Open Access
|Nov 2021

References

  1. Aguirre-Gutiérrez, C.A., Holwerda, F., Goldsmithc, G.R., Delgado, J., Yepez, E., Carbajal, N., Escoto-Rodríguez, M., Arredondo, J.T., 2019. The importance of dew in the water balance of a continental semiarid grassland. J. Arid Environ., 168, 26–35.10.1016/j.jaridenv.2019.05.003
  2. Amani, A., Lebel, T., 1997. Lagrangian Kriging for the estimation of Sahelian rainfall at small time steps. J. Hydrol., 192, 125–157.10.1016/S0022-1694(96)03104-6
  3. Baier, W., 1966. Studies on dew formation under semi-arid conditions. Agric. Meteorol., 3, 103–112.10.1016/0002-1571(66)90008-2
  4. Bargaoui, Z., Chebbi, A., 2009. Comparison of two Kriging interpolation methods applied to spatiotemporal rainfall. J. Hydrol., 365, 56–73.10.1016/j.jhydrol.2008.11.025
  5. Belkiri, L., Tiri, A., Mouni, L., 2020. Spatial distribution of the groundwater quality using Kriging and Co-Kriging interpolations. Groundw. Sustainable Dev., 11, 100473.10.1016/j.gsd.2020.100473
  6. Beysens, D., 2016. Estimating dew yield worldwide from a few meteo data. Atmos. Res., 167, 146–155.10.1016/j.atmosres.2015.07.018
  7. Beysens, D., Muselli, M., Nikolayev, V., Narhe, R., Milimouk, I., 2005. Measurement and modelling of dew in island, coastal and alpine areas. Atmos. Res., 73, 1–22.10.1016/j.atmosres.2004.05.003
  8. Büdel, B., Darienko, T., Deutschewitz, K., Dojani, S., Friedl, S., Mohr, K.I., Salisch, M., Reisser, W., Weber, B., 2009. Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb. Ecol., 57, 229–247.10.1007/s00248-008-9449-918850242
  9. Cano-Díaz, C., Mateoa, P., Muñoz-Martína, M.A., Maestre, F.T., 2018. Diversity of biocrust-forming cyanobacteria in a semiarid gypsiferous site from Central Spain. J. Arid Environ., 151, 83–89.10.1016/j.jaridenv.2017.11.008605429830038450
  10. Chen, N., Yu, K., Jia, R., Teng, J., Zhao, C., 2020. Biocrust as one of multiple stable states in global drylands. Sci. Adv., 6, eaay3763.10.1126/sciadv.aay3763751886932978155
  11. Clus, O., Ouazzani, J., Muselli, M., Nikolayev, V.S., Sharan, G. Beysens, D., 2009. Comparison of various radiation-cooled dew condensers using computational fluid dynamics. Desalination, 249, 707–712.10.1016/j.desal.2009.01.033
  12. Goovaerts, P., 1997. Geostatistics for Natural Resources Evaluation. Oxford University Press, New York, 500 p.
  13. Henschel, J., Siteketa, V., Berkowicz, S.M., Beysens, D., Milimouk-Melnytchouk, I., Muselli, M., Heusinkveld, B.G., Jacobs, A.F.G., 2007. Dew occurrence and collection in Gobabeb, Central Namib Desert. In: Proc. 4th Conf. on Fog, Fog Collect. and Dew (La Serena, Chile, 23-27 July 2007), p. 251.
  14. Infoclimat database, 2021. https://www.infoclimat.fr
  15. Jacobs, A.F.G., Heusinkveld, B.G., Berkowicz, S.M., 2002. A simple model for potential dewfall in an arid region. Atmos. Res., 64, 285–295.10.1016/S0169-8095(02)00099-6
  16. Jones, A., Breuning-Madsen, H., Brossard, M., Dampha, A., Deckers, J., Dewitte, O., Gallali, T., Hallett, S., Jones, R., Kilasara, M., Le Roux, P., Micheli, E., Montanarella, L., Spaargaren, O., Thiombiano, L., Van Ranst, E., Yemefack, M., Zougmoré R., (eds.), 2013. Soil Atlas of Africa. European Commission, Publications Office of the European Union, Luxembourg, 176 p.
  17. Kidron, G.J., 2019. The enigmatic absence of cyanobacterial biocrust from the Namib fog belt: Do dew and fog hold the key? Flora, 257, 151416.10.1016/j.flora.2019.06.002
  18. Kidron, G.J., Tal, S.Y., 2012. The effect of biocrust on evaporation from sand dunes in the Negev Desert. Geoderma, 179–180, 104–112.10.1016/j.geoderma.2012.02.021
  19. Kidron, G.J., Kronenfeld, R., 2020. Assessing the likelihood of the soil surface to condense vapour: The Negev experience. Ecohydrol., 13, e2200.10.1002/eco.2200
  20. Lepioufle, J.M., Leblois, E., Creutin, J.D., 2012. Variography of rainfall accumulation in presence of advection. J. Hydrol., 464–465, 494–504.10.1016/j.jhydrol.2012.07.041
  21. Li, S., Bowker, M.A., Xiao, B., 2021a. Biocrust enhance non-rainfall water deposition and alter its distribution in dryland soils. J. Hydrol., 595, 126050.10.1016/j.jhydrol.2021.126050
  22. Li, S., Xiao, B., Kidron, G.J., 2021b. Moss-dominated biocrust enhance water vapor sorption capacity of surface soil and increase non-rainfall water deposition in drylands. Geoderma 388, 114930.10.1016/j.geoderma.2021.114930
  23. Lima, C.H.R., Kwon, H.H., Kim, Y.T., 2021. A Bayesian Kriging model applied for spatial downscaling of daily rainfall from GCMs. J. Hydrol., 597, 126095.10.1016/j.jhydrol.2021.126095
  24. Lu, X., Wang, L., Pan, M., Kaseke, K.F., Li, B., 2016. A multi-scale analysis of Namibian rainfall over the recent decade – comparing TMPA satellite estimates and ground observations. J. Hydrol. Reg. Stud., 8, 59–68.10.1016/j.ejrh.2016.07.003
  25. Martinez, W.A., Melo, C.E., Melo, O.O., 2017. Median Polish Kriging for space–time analysis of precipitation. Spat. Stat., 19, 1–20.10.1016/j.spasta.2016.10.003
  26. Muselli, M., Clus, O., Ortega, P., Milimouk, I., Beysens, D., 2020. Physical, chemical and biological characteristics of dew and rain water during the dry oceans on of tropical islands. Atmos., 12, 69.10.3390/atmos12010069
  27. New, M., Hulme, M., Jones, P., 2000. Representing twentieth-century space–time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J. Climatol., 12, 829–856.10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2
  28. NOAA’s national weather service glossary, 2021. Available online: https://www.forecast.weather.gov (accessed on 13 February 2021).
  29. Ouyang, H., Lan, S., Yang, H., Hu, C., 2017. Mechanism of biocrust boosting and utilizing non-rainfall water in Hobq Desert of China. Appl. Soil Ecol., 120, 70–80.10.1016/j.apsoil.2017.07.024
  30. Pal Arya, S., 1988. Introduction to Micrometeorology. Acad. Press, San Diego, 307 p.
  31. Pan, Y., Wan, X., Zhang, Y., 2010. Dew formation characteristics in a revegetation-stabilized desert ecosystem in Shapotou area, northern China. J. Hydrol., 387, 265–272.10.1016/j.jhydrol.2010.04.016
  32. Pue, J.D., Botula, Y.D., Nguyen, P.M., Meirvenne, M.V., Cornelis, W.M., 2021. Introducing a Kriging-based Gaussian Process approach in pedotransfer functions: Evaluation for the prediction of soil water retention with temperate and tropical datasets. J. Hydrol., 597, 125770.10.1016/j.jhydrol.2020.125770
  33. Raggio, J., Green, A., Pintado, A., Sancho, L.G., Büdel, B., 2021. Functional performance of biocrust across Europe and its implications for drylands. J. Arid Environ., 186, 104402.10.1016/j.jaridenv.2020.104402
  34. Rahmawati, N., 2020. Space-time variogram for daily rainfall estimates using rain gauges and satellite data in mountainous tropical Island of Bali, Indonesia (Preliminary Study). J. Hydrol., 590, 125177.10.1016/j.jhydrol.2020.125177
  35. Railsback, L.B., Kraft, S., Liang, F., Brook, G.A., Marais, E., Cheng, H., Edwards, R.L., 2019. Control of insolation on stalagmite growth, rainfall, and migration of the tropical rain belt in northern Namibia over the last 100 kyr, as suggested by a rare MIS 5b-5c stalagmite from Dante Cave. Palaeogeogr., Palaeoclimatol., Palaeoecol., 535, 109348.10.1016/j.palaeo.2019.109348
  36. Soderberg, K.S., 2010. The role of fog in the ecohydrology and biogeochemistry of the Namib Desert. MSc. Thesis, University of Cape Town, Department of Environmental Sciences, University of Virginia.
  37. Tomaszkiewicz, M., Najm, A., Beysens, D., Alameddine, I., Zeid, E.B., El-Fadel, M., 2016. Projected climate change impacts upon dew yield in the Mediterranean basin. Sci. Total. Environ., 566–567, 1339–1348.10.1016/j.scitotenv.2016.05.195
  38. Trosseille, J., Mongruel, A., Royon, L., Beysens, D., 2022. Effective surface emissivity during dew water condensation. International Journal of Heat and Mass Transfer, 183, 122078.10.1016/j.ijheatmasstransfer.2021.122078
  39. Tfwala, C.M., Van Rensburga, L.D., Schallb, R., Dlamini, P., 2018. Drought dynamics and interannual rainfall variability on the Ghaap plateau, South Africa, 1918–2014. Phys. Chem. Earth, 107, 1–7.10.1016/j.pce.2018.09.003
  40. Van de Beek, C.Z., Leijnse, H., Torfs, P.J.J.F., Uijlenhoet, R., 2012. Seasonal semi-variance of Dutch rainfall at hourly to daily scales. Adv. Water Resour., 45, 76–85.10.1016/j.advwatres.2012.03.023
  41. Weather Underground database, 2021. https://www.wunderground.com
  42. Yao, X., Xia, B., Kidron, G.J., Hu, K., 2019. Respiration rate of moss-dominated biocrust and their relationships with temperature and moisture in a semiarid ecosystem. Catena, 183, 104195.10.1016/j.catena.2019.104195
  43. Zhuang, Y., Zhao, W., 2017. Dew formation and its variation in Haloxylon ammodendron plantations at the edge of a desert oasis, northwestern China. Agric. For. Meteorol., 247, 541–550.10.1016/j.agrformet.2017.08.032
  44. Zvarevashe, W., Krishnannair, S., Sivakumar, V., 2018. Analysis of Austral Summer and Winter Rainfall Variability in South Africa Using Ensemble Empirical Mode Decomposition. IFAC paperOnline, 51–5, 132–137.10.1016/j.ifacol.2018.06.223
DOI: https://doi.org/10.2478/johh-2021-0030 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 400 - 420
Submitted on: Jun 20, 2021
Accepted on: Oct 1, 2021
Published on: Nov 15, 2021
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Marc Muselli, Daniel Beysens, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.