Have a personal or library account? Click to login
The role of biocrust-induced exopolymeric matrix in runoff generation in arid and semiarid zones – a mini review Cover

The role of biocrust-induced exopolymeric matrix in runoff generation in arid and semiarid zones – a mini review

By: Giora J. Kidron  
Open Access
|Nov 2021

References

  1. Belnap, J., 2006. The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol. Process., 20, 3159–3178.10.1002/hyp.6325
  2. Beven, K.J., Kirkby, M.J., 1979. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull., 24, 43–69. DOI: 10.1080/0262666790949183410.1080/02626667909491834
  3. Beysens, D., 2018. Dew Water. River Publishers, Gistrup, Denmark.
  4. Blackburn, W.H., 1975. Factors influencing infiltration and sediment production of semiarid rangelands in Nevada. Water Resour. Res., 6, 929–937. DOI: 10.1029/WR011i006p0092910.1029/WR011i006p00929
  5. Brotherson, J.D., Rushforth, S.R., 1983. Influence of cryptogamic crusts on moisture relationships of soils in Navajo National Monument, Arizona. Great Basin Natur., 43, 73–78.
  6. Brüll, L.P., Huang, Z., Thomas-Oates, J.E., Paulsen, B.S., Cohen, E.H., Michaelsen, T.E., 2000. Studies of polysaccha-rides from three edible species of Nostoc (cyanobacteria) with different colony morphologies: Structural characterization and effect on the complement system of polysaccharides from Nostoc commune. J. Phycol., 36, 871–881.10.1046/j.1529-8817.2000.00038.x
  7. Cammeraat, E.L.H., 2004. Scale dependent thresholds in hydro-logical and erosion response of a semi-arid catchment in southeast Spain. Agric. Ecosys. Environ., 104, 317–332. DOI: 10.1016/j.agee.2004.01.03210.1016/j.agee.2004.01.032
  8. Campbell, S.E., 1979. Soil stabilization by prokaryotic desert crusts: Implications for Precambrian land biota. Orig. Life, 9, 335–348.10.1007/BF00926826116183
  9. Cantón, Y., Chamizo, S., Rodríguez-Caballero, E., Lazáro, R., Roncero-Ramos, B., Roman, J.R., Solé-Benet, A., 2020. Water regulation in cyanobacterial biocrusts from drylands: Negative impacts of anthropogenic disturbance. Water, 12, 720. https://doi.org/10.3390/w1203072010.3390/w12030720
  10. Chamizo, S., Cantón, Y., Lázaro, R., Domingo, F., 2013. The role of biological soil crusts in soil moisture dynamics in two semiarid ecosystems with contrasting soil textures. J. Hydrol., 489, 74–84.10.1016/j.jhydrol.2013.02.051
  11. Chamizo, S., Cantón, Y., Rodríguez-Caballero, E., Domingo, F., Escudero, A., 2012. Runoff of contrasting scales in a semiarid ecosystem: A complex balance between biological soil crust features and rainfall characteristics. J. Hydrol., 452–453, 130–138.10.1016/j.jhydrol.2012.05.045
  12. Chamizo, S., Belnap, J., Eldridge, D.J., Cantón, Y., Malam-Issa, O., 2016. The role of biocrusts in arid land hydrology. In: Weber, B., Büdel. B., Belnap. J. (Eds.): Biological Soil Crusts: An Organizing Principle in Dryland. Ecological Studies 226. Springer, Switzerland, pp. 321–346.10.1007/978-3-319-30214-0_17
  13. Chamizo, S., Adessi, A., Mugnai, G., Simiani, A., De Philippis, R., 2019. Soil type and cyanobacteria species influence the macromolecular and chemical characteristics of the polysaccharide matrix in induced biocrusts. Microbial Ecol., 78, 482–493. DOI: 10.1007/s00248-018-1305-y10.1007/s00248-018-1305-y
  14. Chen, L.Z., Wang, G.H., Hong, S., Liu, A., Li, C., Liu, Y.D., 2009. UV-B-induced oxidative damage and protective role of exopolysaccharides in desert cyanobacterium Microcoleus vaginatus. J. Integrat. Plant Biol., 51, 2, 194–200. DOI: 10.1111/j.1744-7909.2008.00784.x10.1111/j.1744-7909.2008.00784.x
  15. Chen, Y., Tarchitzky, J., Brouwer, J. Morin, J., Banin, A., 1980. Scanning electron microscope observations in soil crusts and their formation. Soil Sci., 130, 49–55.10.1097/00010694-198007000-00008
  16. Chenu, C., 1993. Clay-or sand- polysaccharide associations as models for the interface between micro-organisms and soil: water related properties and microstructure. Geoderma, 56, 143–156.10.1016/B978-0-444-81490-6.50016-9
  17. Colica, G., Li, H., Rossi, F., Li, D., Liu, Y., De Philippis, R., 2014. Microbial secreted exopolysaccharides affect the hydrological behavior of induced biological soil crusts in desert sandy soils. Soil Biol. Biochem., 68, 62–70.10.1016/j.soilbio.2013.09.017
  18. De Brouwer, J.F.C., Stal, L.J., 2001. Short-term dynamics in microphytobenthos distribution and associated extracellular carbohydrates in surface sediments of the intertidal mudflat. Marine Ecol. Progress Series, 218, 33–44.10.3354/meps218033
  19. de Jong, S.M., Addink, E.A., Van Beek, L.P.H., Duijsings, D., 2011. Physical characterization, spectral response and remotely sensed mapping of Mediterranean soil surface crusts. Catena, 86, 24–35.10.1016/j.catena.2011.01.018
  20. Dekker, L.W., Ritsema, C.J., 1994. How water moves in a water repellent sandy soil. 1. Potential and actual water repellency. Water Resour. Res., 30, 2507–2517.10.1029/94WR00749
  21. Dekker, L.W., Ritsema, C.J., 2000. Wetting patterns and moisture variability in water repellent Dutch soils. J. Hydrol., 231–232, 148–164.10.1016/S0022-1694(00)00191-8
  22. De Philippis, R., 2015. The stability and the hydrological behavior of biological soil crusts is significantly affected by the complex nature of their polysaccharide matrix. EGU General Assembly, 12–17 April, 2015, Vienna, Austria. ID: 3513.
  23. Demig, J.W., Young, J.N., 2017. The role of exopolysaccha-rides in microbial adaptation to cold habitats. In: Margesin, R. (Ed.): Psychrophiles: From Biodiversity to Biotechnology. Springer Inter Pub. AG. DOI: 10.1007/978-3=319-57057-0-0122.
  24. Doerr, S.H., Shakesby, R.A., Dekker, L.W., Ritsema, C.J., 2006. Occurrence, prediction and hydrological effects of water repellency amongst major soil and land-use types in a humid temperate climate. Eur. J. Soil Sci., 57, 741–754.10.1111/j.1365-2389.2006.00818.x
  25. Drahorad, S., Steckenmesser, D., Felix-Henningsen, P., Lichner, L., Rodny, M., 2013. Ongoing succession of biological soil crusts increases water repellency – a case study on Arenosols in Sekule, Slovakia. Biologia, 68, 1089–1093.10.2478/s11756-013-0247-6
  26. Dunkerley, D., 2000. Hydrological effects of dryland shrubs: defining the spatial extent of modified soil water uptake rates at an Australian desert site. J. Arid Environ., 45, 159–172. DOI: 10.1006/jare.2000.063610.1006/jare.2000.0636
  27. Dunne, T., 1990. Hydrology, mechanics, and geomorphic implications of erosion by subsurface flow. In: Higgins, C.G., Coates, D.R. (Eds.): Groundwater Geomorphology: The Role of Subsurface Water in Earth-Surface Processes and Landforms. Geological Society of America, Special Paper 252, pp. 1–28.10.1130/SPE252-p1
  28. Dunne, T., Black, R.D., 1970. An experimental investigation of runoff production in permeable soils. Water Resour. Res., 6, 478–490. DOI: 10.1029/WR006i002p0047810.1029/WR006i002p00478
  29. Ehling-Schulz, M., Schere, S., 1999. UV protection in cyano-bacteria. Eur. J. Phycol., 34, 329–338.10.1080/09670269910001736392
  30. Epstein, E., Grant, W.J., 1993. Soil crust formation as affected by raindrop impact. In: Hadas, A., Swartzendruber, D., Ritjema, P.E., Fuchs, M., Yaron, B. (Eds.): Physical Aspects of Soil Water and Salts in Ecosystems. Springer, Berlin and Heidelberg, pp. 195–201.10.1007/978-3-642-65523-4_20
  31. Felde, V.J.M.N.L., Peth, S., Uteau-Puschmann, D., Drahorad, S., Felix-Henningsen, P., 2014. Soil microstructure as an under-explored feature of biological soil crust hydrological properties: case study from the NW Negev Desert. Bio-divers. Conserv., 23, 1687–1708.10.1007/s10531-014-0693-7
  32. Fick, S.E., Barger, N.N., Duniway, M.C., 2019. Hydrological function of rapidly induced biocrusts. Ecohydrology, 12, e2089. DOI: 10.1002/eco.208910.1002/eco.2089
  33. Fischer, T., Veste, M., Wiehe, W., Lange, P., 2010. Water repellency and pore clogging at early successional stages of microbiotic crusts on inland dunes, Brandenburg, NE Germany. Catena, 80, 47–52. DOI: 10.1016/j.catena.2009.08.00910.1016/j.catena.2009.08.009
  34. Fischer, T., Veste, M., Bens, O., Hüttl, R.F., 2012. Dew formation on the surface of biological soil crusts in central European sand ecosystems. Biogeosciences, 9, 4621–4628.10.5194/bg-9-4621-2012
  35. Fischer, T., Yair, A., Veste, M., Geppet, H., 2013. Hydraulic properties of biological soil crusts on sand dunes studied by 13C-CP/MAS-NMR: A comparison between an arid and temperate site. Catena, 110, 155–160.10.1016/j.catena.2013.06.002
  36. Fox, D.M., Bryan, R.B., Price, A.G., 2004. The role of soil surface crusting in desertification and strategies to reduce crusting. Environ. Monitor. Assess., 99, 149–159.10.1007/s10661-004-4015-5
  37. Francis, M.L., Fey, M.V., Prinsloo, H.P., Ellis, F., Mills, A.J., Medinski, T.V., 2007. Soils of Namaqualand: Compensations for aridity. J. Arid Environ., 70, 588–603.10.1016/j.jaridenv.2006.12.028
  38. Galle, S., Arendt, E.K., 2014. Exopolysaccharides from sourdough lactic acid bacteria. Critical Rev. Food Sci. Nutr., 54, 891–901. DOI: 10.1080/10408398.2011.61747410.1080/10408398.2011.617474
  39. Hagemann, M., Henneberg, M., Felde, V.J.M.N.L., Drahorad, S.L., Berkowicz, S.M., Felix-Henningsen, P. Kaplan, A., 2015. Cyanobacterial diversity in biological soil crusts along a precipitation gradient, Northwest Negev Desert, Israel. Microbiol. Ecol., 70, 219–230.10.1007/s00248-014-0533-z
  40. Hallett, P.D., 2008. A brief overview of the causes, impacts and melioration of soil water repellency – a review. Soil Water Res., 3, S21–S29.10.17221/1198-SWR
  41. Harper, K.T., Marble, J.R., 1988. A role for nonvascular plants in management of arid and semiarid rangelands. In: Tuller, P.T. (Ed.): Applications of Plant Sciences to Rangeland Management and Inventory. Kluwer, Amsterdam, pp. 135–169.10.1007/978-94-009-3085-8_7
  42. Heil, J.W., Juo, A.S.R., McInnes, K.J., 1997. Soil properties influencing surface sealing of some sandy soils in the Sahel. Soil Sci., 162, 459–469.10.1097/00010694-199707000-00001
  43. Horton, R.E., 1933. The role of infiltration in the hydrological cycle. EOS Transactions AGU, 14, 446–460. DOI: 10.1029/TR014;001p00446
  44. Jia, R.L., Li, X.R., Liu, L.C., Pan, Y.X., Gao, Y.H., Wei, Y.P., 2014. Effects of sand burial on dew deposition on moss soil crust in a revegetated area of the Tengger Desert, Northern China. J. Hydrol., 519, 2341–2349.10.1016/j.jhydrol.2014.10.031
  45. Jungerius, D., van der Meulen, F., 1988. Erosion processes in a dune landscape along the Dutch coast. Catena, 15, 217–228.10.1016/0341-8162(88)90046-X
  46. Jungerius, P.D., de Jong, J.H., 1989. Variability of water repellence in the dunes along the Dutch coast. Catena, 16, 491–497.10.1016/0341-8162(89)90030-1
  47. Kato, H., Onda, Y., Tanaka, Y., Asano, M., 2009. Field measurement of infiltration rate using an oscillating nozzle rainfall simulator in the cold, semiarid grassland of Mongolia. Catena, 76, 173–181. DOI: 10.1016/j.catena.2008.11.00310.1016/j.catena.2008.11.003
  48. Keck, H., Felde, V.J.M.N.L., Drahorad, S.L., Felix-Henningsen, P., 2013. Effects of biological soil crusts on water repellency in a sand dune ecosystem of the NW Negev, Israel. Second Intgernational Workshop on Biological Soil Crusts, Madrid, 10th–13th June, 2013.
  49. Keck, H., Felde, V.J.M.N.L., Drahorad, S.L., Felix-Hennigsen, P., 2016. Biological soil crusts cause subcritical water repellency in a sand dune ecosystem located along a rainfall gradient in the NW Negev Desert, Israel. J. Hydrol. Hydro-mech., 64, 133–140.10.1515/johh-2016-0001
  50. Kidron, G.J., 1999. Differential water distribution over dune slopes as affected by slope position and microbiotic crust, Negev Desert, Israel. Hydrol. Process., 13, 1665–1682. DOI: 10.1002/(SICI)1099-1085(19990815)
  51. Kidron G.J., 2011. Runoff generation and sediment yield on homogeneous dune slopes: scale effect and implications for analysis. Earth Surf. Process. Landf., 36, 1809–1824. DOI: 10.1002/esp.220310.1002/esp.2203
  52. Kidron, G.J., 2015. The role of crust thickness in runoff generation from microbiotic crusts. Hydrol. Process., 29, 1783–1792. DOI: 10.1002/hyp.1024310.1002/hyp.10243
  53. Kidron, G.J., 2021. Comparing overland flow processes between semiarid and humid regions: Does saturation overland flow take place in semiarid regions? J. Hydrol., 593, 125624. DOI: 10.1016/j.jhydrol.2020.12562410.1016/j.jhydrol.2020.125624
  54. Kidron, G.J., Büdel, B., 2014. Contrasting hydrological response of coastal and desert biocrusts. Hydrol. Process., 28, 361–371. DOI: 10.1002/hyp.958710.1002/hyp.9587
  55. Kidron, G.J., Kronenfeld, R., 2020a. Assessing the likelihood of the soil surface to condense vapor: The Negev experience. Ecohydrology, 13, e2200. DOI: 10.1002/eco.220010.1002/eco.2200
  56. Kidron, G.J., Kronenfeld, R., 2020b. Atmospheric humidity is unlikely to serve as an important water source for crustose soil lichens in the Tabernas Desert. J. Hydrol. Hydromech., 68, 359–367. DOI: 10.2478/johh-2020-003410.2478/johh-2020-0034
  57. Kidron, G.J., Starinsky, A., 2019. Measurements and ecological implications of non-rainfall water in desert ecosystems – A review. Ecohydrology, 12, e2121. DOI: 10.1002/eco.212110.1002/eco.2121
  58. Kidron, G.J., Tal, S.Y., 2012. The effect of biocrusts on evaporation from sand dunes in the Negev Desert. Geoderma, 179-180, 104–112. DOI: 10.1016/j.geoderma.2012.02.02110.1016/j.geoderma.2012.02.021
  59. Kidron, G.J., Yair, A., 1997. Rainfall-runoff relationships over encrusted dune surfaces, Nizzana, Western Negev, Israel. Earth Surf. Process. Landf., 22, 1169–1184. DOI: 10.1002/esp.153210.1002/esp.1532
  60. Kidron, G.J., Yaalon, D.H., Vonshak, A., 1999. Two causes for runoff initiation on microbiotic crusts: hydrophobicity and pore clogging. Soil Sci. 164, 18–27.10.1097/00010694-199901000-00004
  61. Kidron, G.J., Herrnstadt, I., Barzilay, E., 2002. The role of dew as a moisture source for sand microbiotic crusts in the Negev Desert, Israel. J. Arid Environ., 52, 517–533. DOI: 10.1016/jare.2002.1014
  62. Kidron, G.J., Wang, Y., Herzberg, M., 2020. Exopolysaccharides may increase biocrust rigidity and induce runoff generation. J. Hydrol., 588, 125081. DOI: 10.1016/J.JHYDROL.2020.12508110.1016/j.jhydrol.2020.125081
  63. Kidron, G.J., Yair, A., Vonshak, A., Abeliovich A., 2003. Microbiotic crust control of runoff generation on sand dunes in the Negev Desert. Water Resour. Res., 39, 1108. DOI: 10.1029/2002WR001561.2003
  64. Lange, O.L., Schulze, E.D., Koch, W., 1970. Ecophysiological investigations on lichens of the Negev Desert, III: CO2 gas exchange and water metabolism of crustose and foliose lichens in their natural habitat during the summer dry period. Flora, 159, 525–538.
  65. Lange, O.L., Belnap, J., Reichenberger, H., 1998. Photosynthesis of the cyanobacterial soil-crust lichen Collema tenax from arid lands in southern Utah, USA: role of water content on light and temperature response of CO2 exchange. Func. Ecol., 12, 195–202.10.1046/j.1365-2435.1998.00192.x
  66. Lange, O.L., Kidron, G.J., Büdel, B., Meyer, A., Kilian, E., Abeliovitch, A., 1992. Taxonomic composition and photo-synthetic characteristics of the biological soil crusts covering sand dunes in the Western Negev Desert. Func. Ecol., 6, 519–527.10.2307/2390048
  67. Lázaro, R., Rodrigo, F.S., Gutiérrez, L., Domingo, F., Puigdegabregas, J., 2001. Analysis of 30-year rainfall record (1967-1997) in semi-arid SE Spain for implications on vegetation. J. Arid Environ., 48, 373–395.10.1006/jare.2000.0755
  68. Li, S., Xiao, B., Sun F., Kidron, G.J., 2021. Moss-dominated biocrusts greatly enhance water vapor sorption capacity and increase non-rainfall water deposition in drylands. Geoderma, 388, 114930. DOI: 10.1016/j.geoderma.2021.11493010.1016/j.geoderma.2021.114930
  69. Lichner, L., Hallett, P.D., Orfánus, T., Czachor, H., Rajkai, K., Šir, M., Tesař, M., 2010. Vegetation impact on the hydrology of an aeolian sandy soil in a continental climate. Ecohydrology, 3, 413–420.10.1002/eco.153
  70. Lichner, L., Holko, L., Zhukova, N., Shacht, K., Rajkai, K., Fodor, N., Sándor, R., 2012. Plants and biological soil crust influence the hydrophysical parameters and water flow in an aeolian sandy soil. J. Hydrol. Hydromech., 60, 309–318.10.2478/v10098-012-0027-y
  71. Lichner, L., Hallett, P.D., Drongova, Z., Czachor, H., Kovacik, L., Mataix-Solera, J., Homolák, M., 2013. Algae influence the hydrophysical parameters of a sand soil. Catena, 108, 58–68.10.1016/j.catena.2012.02.016
  72. Lichner, L., Felde, V.J.M.N.L., Büdel, B., Leue, M., Gerke, H.H., Ellerbrock, R.H., Kollár, J., Rodny, M., Šurda, P., Fodor, N., Sándor, R., 2018. Effect of vegetation and its succession on water repellency in sandy soils. Ecohydrology, 11, e1991. DOI: 10.1002/eco.199110.1002/eco.1991
  73. Mager, D.M., Thomas, A.D., 2011. Extracellular polysaccha-rides from cyanobacterial soil crusts: A review of their role in dryland soil processes. J. Arid Environ., 75, 91–97.10.1016/j.jaridenv.2010.10.001
  74. Malam-Issa, O., Défarge, C., Trichet, J., Valentin, C., Rajot, J.L., 2009. Microbiotic soil crusts in the Sahel of western Niger and their influence on soil porosity and water dynamics. Catena, 77, 48–55.10.1016/j.catena.2008.12.013
  75. Mayor, A.G., Bautista, S., Bellot, J., 2009. Factors and interactions controlling infiltration, runoff, and soil loss at the microscale in a patchy Mediterranean semiarid landscape. Earth Surf. Process. Landf., 34, 1702–1711. DOI: 10.1002/esp.187510.1002/esp.1875
  76. Mazor, G., Kidron, G.J., Vonshak, A., Abeliovich, A., 1996. The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiol. Ecol., 21, 121–130. DOI: 10.1111/j.1574-6941.1996.tb00339.x10.1111/j.1574-6941.1996.tb00339.x
  77. McIntyre, D.S., 1958. Soil splash and the formation of surface crusts by raindrop impact. Soil Sci., 85, 261–266.10.1097/00010694-195805000-00005
  78. More, T.T., Yadav, J.S.S., Yan, S., Tyagi, R.D., Surampalli, R.Y., 2014. Extracellular polymeric substances of bacteria and their potential environmental applications. J. Environ. Manage., 144, 1–25. DOI: 10.1016/j.jenvman.2014.05.010.10.1016/j.jenvman.2014.05.01024907407
  79. Mugnai, G., Rossi, F., Chamizo, S., Adessi, A., De Philippis, R., 2020a. The role of grain size and inoculums amount of biocrust formation by Leptolyngbya ohadii. Catena, 184, 104248. DOI: 10.1016/j.catena.2019.10424810.1016/j.catena.2019.104248
  80. Mugnai, G., Rossi, F., Mascalchi, C., Ventura, S., De Philippis, R., 2020b. High arctic biocrusts: characterization of the exopolysaccharidic matrix. Polar Biol., 43, 1805–1815. DOI: 10.1007/s00300-020-02746-810.1007/s00300-020-02746-8
  81. Mugnai, G., Rossi, F., Felde, V.J.M.N.L., Colesie, C., Büdel, B., Peth, S., Kaplan, A., De Philippis, R., 2018. Development of the polysaccharide matrix in biocrusts induced by a cyanobacterium inoculated in sand microcosms. Biol. Fert. Soils, 54, 27–40.10.1007/s00374-017-1234-9
  82. Nagar, S., Antony, R., Thamban, M., 2021. Extracellular polymeric substances in Antarctic environments: A review of their ecological roles and impact on glacier biogeochemical cycles. Polar Sci. DOI: 10.1016/j.polar.2021.10068610.1016/j.polar.2021.100686
  83. Nicolaus, B., Panico, A., Lama, L., Romano, I., Manca, M.C., De Giulio, A., Gambacorta, A., 1999. Chemical composition and production of exopolysaccharides from representative members of heterocystous and non-heterocystous cyanobacteria. Phytochemistry, 52, 639–647.10.1016/S0031-9422(99)00202-2
  84. Onofiok, O., Singer, M.J., 1984. Scanning electron microscope studies of surface crusts formed by simulated rainfall. Soil Sci. Soc. Am. J., 48, 1137–1143.10.2136/sssaj1984.03615995004800050037x
  85. Oostindie, K., Dekker, L.W., Wesseling, J.G., Ritsema, C.J., Geissen, V., 2013. Development of actual water repellency in a grass-covered dune sand during dehydration experiment. Geoderma, 204–205, 23–30.10.1016/j.geoderma.2013.04.006
  86. Or, D., Smets, B.F., Wraith, J.M., Dechesne, A., Friedman, S.P., 2007. Physical constraints affecting bacterial habitats and activity in unsaturated porous media – a review. Adv. Water Resour., 30, 1505–1527.10.1016/j.advwatres.2006.05.025
  87. Otero, A., Vincenzini, M., 2003. Extracellular polysaccharide synthesis by Nostoc strains as affected by N source and light intensity. J. Biotechnol., 102, 143–152.10.1016/S0168-1656(03)00022-1
  88. Pagliai, M., Bisdom, E.B.A., Ledin, S., 1983. Changes in surface structure (crusting) after application of sewage sludge and pig slurry to cultivated agricultural soils in northern Italy. Geoderma, 30, 35–53.10.1016/S0166-2481(08)70283-6
  89. Pereira, S., Zille, A., Micheletti, E., Moradas-Ferreira, P., De Philippis, R., Tamagnini, P., 2009. Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol. Rev., 33, 917–941.10.1111/j.1574-6976.2009.00183.x19453747
  90. Pringault, O., Garcia-Pichel, F., 2004. Hydrotaxis of cyanobacteria in desert crusts. Microb. Ecol., 47, 366–373.10.1007/s00248-002-0107-314605777
  91. Redmile-Gordon, M., Gregory, A.S., White, R.P., Watts, C.W., 2020. Soil organic carbon, extracellular polymeric substances (EPS), and soil structural stability as affected by previous and current land-use. Geoderma, 363. 114143. DOI: 10.1016/j.geoderma.2019.11414310.1016/j.geoderma.2019.114143
  92. Rodriguez-Caballero, E., Cantón, Y., Chamizo, S., Lázaro, R., Escudero, A., 2013. Soil loss and runoff in semiarid ecosystems: A complex interaction between biological soil crusts, micro-topography, and hydrological drivers. Ecosystems, 16, 529–546.10.1007/s10021-012-9626-z
  93. Rodriguez-Caballero, E., Belnap, J., Büdel, B., Crutzen, P.J., Andreae, M.O., Pöschl, U., Weber, B., 2018. Dryland photo-autotrophic soil surface communities endangered by global change. Nat. Geosci., 11, 185–189. DOI: 10.1038/s41561-018-0072-110.1038/s41561-018-0072-1
  94. Rossi, F., De Philippis, R., 2015. Role of cyanobacterial exopolysccharides in phototrophic biofilms and in complex microbial mats. Life, 5, 1218–1238. DOI: 10.3390/life502121810.3390/life5021218
  95. Rossi, F., De Philippis, R., 2016. Excocellular polysaccharides in microalgae and cyanobacteria: Chemical features, role and enzymes and genes involved in their biosynthesis. In: Borowitzka, M.A., Beardall, J., Raven, J.A. (Eds.): The Physiology of Microalgae. Developments in Applied Phycology, Springer, Switzerland. pp. 565–590. DOI: 10.1007/978-3-319-24945-2_2110.1007/978-3-319-24945-2_21
  96. Rossi, F., Mugnai, G., De Philippis, R., 2018. Complex role of the polymeric matrix in biological soil crusts. Plant Soil, 429, 19–34. DOI: 10.1007/s11104-017-3441-410.1007/s11104-017-3441-4
  97. Rossi, F., Potrafka, R.M., Garcia-Pichel, F., De Philippis, R., 2012. The role of exopolysaccharides in enhancing hydraulic conductivity of biological soil crusts. Soil Biol. Biochem., 46, 33–40.10.1016/j.soilbio.2011.10.016
  98. Rutin, J., 1983. Erosional processes on a coastal sand dune, De Blink, Noordwijkerhout. Publication 35 of the Physical Geography and Soils Laboratory, University of Amsterdam, Amsterdam.
  99. Sun, F., Xiao, B., Li S., Kidron, G.J., 2021. Towards moss biocrust effects on surface soil water holding capacity: Soil water retention curve analysis and modeling. Geoderma, 399, 115120. DOI: 10.1016/j.geoderma.2021.11512010.1016/j.geoderma.2021.115120
  100. Talbot, M.R., Williams, M.A.J., 1978. Erosion of fixed dunes in the Sahel, central Niger. Earth Surf. Process. Landf., 3, 107–113.10.1002/esp.3290030202
  101. Tarchitzky, J., Banin, A., Morin, J., Chen, Y., 1984. Nature, formation and effects of soil crusts formed by water drop impact. Geoderma, 33, 135–155.10.1016/0016-7061(84)90025-9
  102. Verrecchia, E., Yair, A., Kidron, G.J., Verrecchia, K., 1995. Physical properties of the psammophile cryptogamic crust and their consequences to the water regime of sandy soils, Northwestern Negev Desert, Israel. J. Arid Environ., 29, 427–437. DOI: 10.1016/S0140-1963(95)80015-810.1016/S0140-1963(95)80015-8
  103. Veste, M., Littmann, T., Friedrich, H., Breckle, S.-W., 2001. Microclimatic boundary conditions for activity of soil lichen crusts in sand dunes of the north-western Negev desert, Israel. Flora, 196, 465–474.10.1016/S0367-2530(17)30088-9
  104. Wilske, B., Burgheimer, J., Karnieli, A., Zaady, E., Andreae, M.O., Yakir, D., Kesselmeir, J., 2008. The CO2 exchange of biological soil crusts in a semiarid grass-shrubland at the northern transition zone of the Negev Desert, Israel. Biogeosci. Discuss., 5, 1969–2001.10.5194/bgd-5-1969-2008
  105. Wood, M.K., Blackburn, W.H., 1981. Grazing systems: Their influence on infiltration rates in the rolling plains of Texas. J. Range Manage., 34, 331–335.10.2307/3897863
  106. Xiao, B., Sun, F., Hu, K., Kidron, G.J., 2019a. Biocrusts reduce surface soil infiltrability and impede soil water infiltration under tension and ponding conditions in dryland ecosystem. J. Hydrol., 568, 792–802. DOI: 10.1016/j.jhydrol.2018.11.51
  107. Xiao, B, Sun, F., Yao, X., Hu, K., Kidron, G.J., 2019b. Seasonal variations in infiltrability of moss-dominated biocrusts on aeolian sand and loess soil in the Chinese Loess Plateau. Hydrol. Process., 33, 2449–2463. DOI: 10.1002/hyp.1348410.1002/hyp.13484
  108. Xu, C.-Y., Singh, V.P., 2001. Evaluation and generalization of temperature-based methods for calculating evaporation. Hydrol. Process., 15, 205–319. DOI: 10.1002/hyp.11910.1002/hyp.119
DOI: https://doi.org/10.2478/johh-2021-0028 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 360 - 368
Submitted on: Jun 24, 2021
|
Accepted on: Aug 27, 2021
|
Published on: Nov 15, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Giora J. Kidron, published by Slovak Academy of Sciences, Institute of Hydrology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.