Have a personal or library account? Click to login
Effects of slow and fast pyrolysis biochar on N2O emissions and water availability of two soils with high water-filled pore space Cover

Effects of slow and fast pyrolysis biochar on N2O emissions and water availability of two soils with high water-filled pore space

Open Access
|Nov 2021

References

  1. Abd El-Mageed, T.A., Abdelkhalik, A., Abd El-Mageed, S.A., Semida, W.M., 2021. Co-composted poultry litter biochar enhanced soil quality and eggplant productivity under different irrigation regimes. Journal of Soil Science and Plant Nutrition. https://doi.org/10.1007/s42729-021-00490-410.1007/s42729-021-00490-4
  2. Ajayi, A.E., Horn, R., 2016. Modification of chemical and hydrophysical properties of two texturally differentiated soils due to varying magnitudes of added biochar. Soil and Tillage Research, 164, 34–44.10.1016/j.still.2016.01.011
  3. Blanco-Canqui, H., 2017. Biochar and soil physical properties. Soil Science Society of America Journal, 81, 4, 687–711.10.2136/sssaj2017.01.0017
  4. Bruun, E.W., Ambus, P., Egsgaard, H., Hauggaard-Nielsen, H., 2012. Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biology and Biochemistry, 46, 73–79.10.1016/j.soilbio.2011.11.019
  5. Buchkina, N., Rizhiya, E., Balashov, E., 2012. N2O emission from a loamy sand Spodosol as related to soil fertility and N-fertilizer application for barley and cabbage. Arch. Agron. Soil Sci., 58, S141–S146.10.1080/03650340.2012.698729
  6. Buchkina, N.P., Hüppi, R., Leifeld, J., 2019. Biochar and short-term N2O and CO2 emission from plant residue-amended soil with different fertilisation history. Zemdirbyste-Agriculture, 106, 2, 99–106.10.13080/z-a.2019.106.013
  7. Cayuela, M.L., Zwieten, L.V., Singh, B.P., Jeffery, S., Roig, A., Sánchez-Monedero, M.A., 2013. Biochar’s role in mitigating soil nitrous oxide emissions: a review and metaanalysis. Agric. Ecosyst. Environ., 191, 5–16.10.1016/j.agee.2013.10.009
  8. Das, S.K., Ghosh, G.K., Avasthe, R.K., Sinha, K., 2021. Compositional heterogeneity of different biochar: Effect of pyrolysis temperature and feedstocks. Journal of Environmental Management, 278, 111501.10.1016/j.jenvman.2020.11150133157461
  9. Dobbie, K.E., Smith, K.A., 2003. Nitrous oxide emission factors for agricultural soils in Great Britain: The impact of soil water-filled pore space and other controlling variables. Global Change Biol., 9, 204–218.10.1046/j.1365-2486.2003.00563.x
  10. Githinji, L., 2014. Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam. Archives of Agronomy and Soil Science, 60, 4, 457–470.10.1080/03650340.2013.821698
  11. Głąb, T., Palmowska, J., Zaleski, T., Gondek, K., 2016. Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma, 281, 11–20.10.1016/j.geoderma.2016.06.028
  12. Haider, G., Steffens, D., Moser, G., Müller, C., Kammann, C.I., 2017. Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study. Agriculture, Ecosystems & Environment, 237, 80–94.10.1016/j.agee.2016.12.019
  13. Hardie, M., Clothier, B., Bound, S., Oliver, G., Close, D., 2014. Does biochar influence soil physical properties and soil water. Plant Soil, 376, 347–361.10.1007/s11104-013-1980-x
  14. Horák, J., 2015. Testing biochar as a possible way to ameliorate slightly acidic soil at the research field located in the Danubian lowland. Acta Horticulturae et Regiotecturae, 18, 1, 20.10.1515/ahr-2015-0005
  15. Horák, J., Kondrlová, E., Igaz, D., Šimanský, V., Felber, R., Lukac, M., Balashov, E., Rizhiya, E., Buchkina, N., Jankowski, M., 2017. Biochar and biochar with N-fertilizer affect soil N2O emission in Haplic Luvisol. Biologia, 72, 9, 995–1001.10.1515/biolog-2017-0109
  16. Horák, J., Balashov, E., Šimanský, V., Igaz, D., Buchkina, N., Aydin, E., Bárek, V., Drgoňová, K., 2019. Effects of conventional moldboard and reduced tillage on seasonal variations of direct CO2 and N2O emissions from a loam Haplic Luvisol. Biologia, 74, 767–782.10.2478/s11756-019-00216-z
  17. Igaz, D., Šimanský, V., Horák, J., Kondrlová, E., Domanová, J., Rodný, M., Buchkina, N.P., 2018. Can a single dose of bio-char affect selected soil physical and chemical characteristics? Journal of Hydrology and Hydromechanics, 66, 4, 421–428.10.2478/johh-2018-0034
  18. Ibrahim, H.M., Al-Wabel, M.I., Usman, A.R., Al-Omran, A., 2013. Effect of Conocarpus biochar application on the hydraulic properties of a sandy loam soil. Soil Science, 178, 4, 165–173.10.1097/SS.0b013e3182979eac
  19. Ippolito, J.A., Laird, D.A., Busscher, W.J., 2012. Environmental benefits of biochar. Journal of Environmental Quality, 41, 4, 967–972.10.2134/jeq2012.015122751039
  20. Jien, S.H., Wang, C.S., 2013. Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena, 110, 225–233.10.1016/j.catena.2013.06.021
  21. Juriga, M., Aydın, E., Horák, J., Chlpík, J., Rizhiya, E.Y., Buchkina, N.P., Balashov, E.V., Šimanský, V., 2021. The importance of initial application and reapplication of biochar in the context of soil structure improvement. Journal of Hydrology and Hydromechanics, 69, 1, 87–97.10.2478/johh-2020-0044
  22. Karhu, K., Mattila, T., Bergström, I., Regina, K., 2011. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity – Results from a short-term pilot field study. Agriculture, Ecosystems & Environment, 140, 1–2, 309–313.10.1016/j.agee.2010.12.005
  23. Keiluweit, M., Nico, P.S., Johnson, M.G., Kleber, M., 2010. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science & Technology, 44, 4, 1247–1253.10.1021/es903141920099810
  24. Kuppusamy, S., Thavamani, P., Megharaj, M., Venkateswarlu, K., Naidu, R., 2016. Agronomic and remedial benefits and risks of applying biochar to soil: current knowledge and future research directions. Environment International, 87, 1–12.10.1016/j.envint.2015.10.01826638014
  25. Laird, D.A., 2008. The charcoal vision: a win–win–win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agronomy Journal, 100, 1, 178–181.10.2134/agronj2007.0161
  26. Lee, J., Hopmans, J.W., van Kessel, C., King, A.P., Evatt, K.J., Louie, D., Rolston, D.E., Six, J., 2009. Tillage and seasonal emissions of CO2, N2O and NO across a seed bed and at the field scale in a Mediterranean climate. Agric. Ecosyst. Environ., 129, 378–390.10.1016/j.agee.2008.10.012
  27. Lehmann, J., Gaunt, J., Rondon, M., 2006. Bio-char sequestration in terrestrial ecosystems – a review. Mitigation and Adaptation Strategies for Global Change, 11, 2, 403–427.10.1007/s11027-005-9006-5
  28. Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W. C., Crowley, D., 2011. Biochar effects on soil biota – a review. Soil Biology and Biochemistry, 43, 9, 1812–1836.10.1016/j.soilbio.2011.04.022
  29. Lei, O., Zhang, R., 2013. Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties. Journal of Soils and Sediments, 13, 9, 1561–1572.10.1007/s11368-013-0738-7
  30. Liao, J., Hu, A., Zhao, Z., Liu, X., Jiang, C., Zhang, Z., 2021. Biochar with large specific surface area recruits N2O-reducing microbes and mitigate N2O emission. Soil Biology and Biochemistry, 156, 108212.10.1016/j.soilbio.2021.108212
  31. Mann, H.B., Whitney, D.R., 1947. On a test of whether one of two random variables is stochastically larger than the other. The Annals of Mathematical Statistics, 18, 1, 50–60.10.1214/aoms/1177730491
  32. Murtaza, G., Ahmed, Z., Usman, M., Tariq, W., Ullah, Z., Shareef, M., Iqbal, H., Waqas, M., Tariq, A., Wu, Y., Zhang, Z., Ditta, A., 2021. Biochar induced modifications in soil properties and its impacts on crop growth and production. Journal of Plant Nutrition, 44, 11, 1677–1691.10.1080/01904167.2021.1871746
  33. Novak, J.M., Lima, I., Xing, B., Gaskin, J.W., Steiner, C., Das, K.C., Ahmedna, M., Rehrah, D., Watts, D.W, Busscher, W.J., Schomberg., H., 2009. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals of Environmental Science, 3, 195–206.
  34. Rajapaksha, A.U., Vithanage, M., Zhang, M., Ahmad, M., Mohan, D., Chang, S.X., Ok, Y.S., 2014. Pyrolysis condition affected sulfamethazine sorption by tea waste biochars. Bio-resource Technology, 166, 303–308.10.1016/j.biortech.2014.05.02924926603
  35. Ren, X., Sun, H., Wang, F., Cao, F., 2016. The changes in bio-char properties and sorption capacities after being cultured with wheat for 3 months. Chemosphere, 144, 2257–2263.10.1016/j.chemosphere.2015.10.13226598994
  36. Rizhiya, E.Y., Mukhina, I.M., Balashov, E.V., Šimanský, V., Buchkina, N.P., 2019. Effect of biochar on N2O emission, crop yield and properties of Stagnic Luvisol in a field experiment. Zemdirbyste-Agriculture, 106, 4, 297–306.10.13080/z-a.2019.106.038
  37. Saarnio, S., Heimonen, K., Kettunen, R., 2013. Biochar addition indirectly affects N2O emissions via soil moisture and plant N uptake. Soil Biology and Biochemistry, 58, 99–106.10.1016/j.soilbio.2012.10.035
  38. Shapiro, S.S., Wilk, M.B., 1965. An analysis of variance test for normality (complete samples). Biometrika, 52, 3/4, 591–611.10.1093/biomet/52.3-4.591
  39. Spearman, C., 1904. “General intelligence,” objectively determined and measured. The American Journal of Physiology, 15, 2, 201–292.10.2307/1412107
  40. Stewart, C.E., Zheng, J., Botte, J., Cotrufo, M.F., 2013. Co generated fast pyrolysis biochar mitigates green house gas emissions and increases carbon sequestration in temperate soils. GCB-Bioenergy, 5, 2, 153–164.10.1111/gcbb.12001
  41. Syakila, A., Kroeze, C., 2011. The global nitrous oxide budget revisited. Greenhouse Gas Measur. Manag., 1, 17–26.10.3763/ghgmm.2010.0007
  42. Šrank, D., Šimanský, V., 2020. Differences in soil organic matter and humus of sandy soil after application of biochar substrates and combination of biochar substrates with mineral fertilizers. Acta Fytotechnica et Zootechnica, 23, 3, 117–124.10.15414/afz.2020.23.03.117-124
  43. Toková, L., Igaz, D., Horák, J., Aydin, E., 2020. Effect of bio-char application and re-application on soil bulk density, porosity, saturated hydraulic conductivity, water content and soil water availability in a silty loam Haplic Luvisol. Agronomy, 10, 7, 1005.
  44. Van Zwieten, L., Kimber, S., Morris, S., Chan, K.Y., Downie, A., Rust, J., Cowie, A., 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 327, 1, 235–246.10.1007/s11104-009-0050-x
  45. Wang, Z., Zheng, H., Luo, Y., Deng, X., Herbert, S., Xing, B., 2013. Characterization and influence of biochars on nitrous oxide emission from agricultural soil. Environmental Pollution, 174, 289–296.10.1016/j.envpol.2012.12.003
  46. WRB, 2014. World reference base for soil resources. World Soil Resources Reports, No. 106, FAO, 189 p.
  47. Wrage, N., Velthof, G.L., van Beusichem, M.L., Oenema, O., 2001. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol. Biochem., 33, 1723–1732.10.1016/S0038-0717(01)00096-7
  48. Yanai, Y., Toyota, K., Okazaki, M., 2007. Effects of charcoal addition on N2O emissions from soil resulting from re-wetting air-dried soil in short-term laboratory experiments. Soil Science and Plant Nutrition, 53, 2, 181–188.10.1111/j.1747-0765.2007.00123.x
  49. Yuen, S.H., Pollard, A.G., 1954. Determination of nitrogen in agricultural materials by the Nessler reagent. II. Micro-determinations in plant tissue and in soil extracts. J. Sci. Food Agric., 5, 364–369.10.1002/jsfa.2740050803
  50. Zhang, Q., Wu, Z., Zhang, X., Duan, P., Shen, H., Gunina, A., Yan, Z., Xiong, Z., 2021. Biochar amendment mitigated N2O emissions from paddy field during the wheat growing season. Environmental Pollution, 281, 117026.10.1016/j.envpol.2021.11702633813196
DOI: https://doi.org/10.2478/johh-2021-0024 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 467 - 474
Submitted on: May 31, 2021
Accepted on: Aug 4, 2021
Published on: Nov 15, 2021
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Eugene Balashov, Natalya Buchkina, Vladimir Šimanský, Ján Horák, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.