Have a personal or library account? Click to login
Water repellency decreases with increasing carbonate content and pH for different biocrust types on sand dunes Cover

Water repellency decreases with increasing carbonate content and pH for different biocrust types on sand dunes

Open Access
|Nov 2021

References

  1. Arenas-Lago, D., Andrade, M.L., Vega, F.A., Singh, B.R., 2016. TOF-SIMS and FE-SEM/EDS to verify the heavy metal fractionation in serpentinite quarry soils. Catena, 136, 30–43.10.1016/j.catena.2015.03.005
  2. Bachmann, J., Woche, S.K., Goebel, M.O., Kirkham, M.B., Horton, R., 2003. Extended methodology for determining wetting properties of porous media. Water Resour. Res., 39, 12, 1353.
  3. Belnap, J., 2006. The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol. Process., 20. 15, 3159–3178.10.1002/hyp.6325
  4. Beraldi-Campesi, H., Hartnett, H. E., Anbar, A., Gordon, G. W., Garcia-Pichel, F., 2009. Effect of biological soil crusts on soil elemental concentrations: implications for biogeo-chemistry and as traceable biosignatures of ancient life on land. Geobiology, 7, 3, 348–359.10.1111/j.1472-4669.2009.00204.x19573165
  5. Bisdom, E., Dekker, L.W., Schoute, J., 1993. Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure. In: Brussaard, L., Kooistra, M.J.(Eds.): Soil Structure/Soil Biota Interrelationships. International Workshop on Methods of Research on Soil Structure/Soil Biota Interrelationsships, held at the International Agricultural Centre, Wageningen, the Netherlands, 1991. Elsevier, Amsterdam, pp. 105–118.
  6. Cania, B., Vestergaard, G., Kublik, S., Köhne, J.M., Fischer, T., Albert, A., Winkler, B., Schloter, M., Schulz, S., 2020. Biological soil crusts from different soil substrates harbor distinct bacterial groups with the potential to produce exopolysaccharides and lipopolysaccharides. Microb. Ecol., 79, 2, 326–341.10.1007/s00248-019-01415-631372685
  7. Chamizo, S., Cantón, Y., Miralles, I., Domingo, F., 2012. Biological soil crust development affects physicochemical characteristics of soil surface in semiarid ecosystems. Soil Biol. Biochem., 49, 96–105.10.1016/j.soilbio.2012.02.017
  8. Cliff, J.B., Gaspar, D.J., Bottomley, P.J., Myrold, D.D., 2002. Exploration of inorganic C and N assimilation by soil microbes with time-of-flight secondary ion mass spectrometry. Appl. Environ. Microbiol., 68, 8, 4067–4073.10.1128/AEM.68.8.4067-4073.200212405812147508
  9. Dekker, L.W., Doerr, S.H., Oostindie, K., Ziogas, A.K., Ritsema, C.J., 2001. Water repellency and critical soil water content in a dune sand. Soil Sci. Soc. Am. J., 65, 6, 1667–1674.10.2136/sssaj2001.1667
  10. Dekker, L.W., Ritsema, C.J., 1994. How water moves in a water repellent sandy soil: 1. Potential and actual water repellency. Water Resour. Res., 30, 9, 2507–2517.10.1029/94WR00749
  11. Diehl, D., Bayer, J.V., Woche, S.K., Bryant, R., Doerr, S.H., Schaumann, G.E., 2010. Reaction of soil water repellency to artificially induced changes in soil pH. Geoderma, 158, 3–4, 375–384.10.1016/j.geoderma.2010.06.005
  12. Diehl, D., Ellerbrock, R.H., Schaumann, G.E., 2009. Influence of drying conditions on wettability and DRIFT spectroscopic C-H band of soil samples. Eur. J. Soil. Sci., 60, 4, 557–566.10.1111/j.1365-2389.2009.01150.x
  13. Doerr, S.H., Shakesby, R.A., Walsh, R., 2000. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Science Rev., 51, 1–4, 33–65.10.1016/S0012-8252(00)00011-8
  14. Drahorad, S., Felix-Henningsen, P., Eckhardt, K.-U., Leinweber, P., 2013a. Spatial carbon and nitrogen distribution and organic matter characteristics of biological soil crusts in the Negev desert (Israel) along a rainfall gradient. J. Arid Environ., 94, 18–26.10.1016/j.jaridenv.2013.02.006
  15. Drahorad, S., Steckenmesser, D., Felix-Henningsen, P., Lichner, Ľ., Rodný, M., 2013b. Ongoing succession of biological soil crusts increases water repellency — a case study on Arenosols in Sekule, Slovakia. Biologia, 68, 6, 1089–1093.10.2478/s11756-013-0247-6
  16. Drahorad, S.L., Jehn, F.U., Ellerbrock, R.H., Siemens, J., Felix-Henningsen, P., 2020. Soil organic matter content and its aliphatic character define the hydrophobicity of biocrusts in different successional stages. Ecohydrol., 13, 6, e2232.10.1002/eco.2232
  17. Ellerbrock, R.H., Hoehn, A., Rogasik, J., 1999. Functional analysis of soil organic matter as affected by long-term manurial treatment. Eur. J. Soil. Sci., 50, 65–71.10.1046/j.1365-2389.1999.00206.x
  18. Ellerbrock, R.H., Gerke, H.H., Bachmann, J., Goebel, M.-O., 2005. Composition of organic matter fractions for explaining wettability of three forest soils. Soil Sci. Soc. Am. J., 69, 1, 57.10.2136/sssaj2005.0057
  19. Felde, V.J.M.N.L., Peth, S., Uteau-Puschmann, D., Drahorad, S., Felix-Henningsen, P., 2014. Soil microstructure as an under-explored feature of biological soil crust hydrological properties: case study from the NW Negev Desert. Biodivers. Conserv., 23, 7, 1687–1708.10.1007/s10531-014-0693-7
  20. Fischer, T., Veste, M., Schaaf, W., Dümig, A., Kögel-Knabner, I., Wiehe, W., Bens, O., Hüttl, R.F., 2010. Initial pedogenesis in a topsoil crust 3 years after construction of an artificial catchment in Brandenburg, NE Germany. Biogeochem., 101, 1–3, 165–176.10.1007/s10533-010-9464-z
  21. Fischer, T., Yair, A., Veste, M., Geppert, H., 2013. Hydraulic properties of biological soil crusts on sand dunes studied by 13C-CP/MAS-NMR: A comparison between an arid and a temperate site. Catena, 110, 155–160.10.1016/j.catena.2013.06.002
  22. González-Peñaloza, F.A., Zavala, L.M., Jordán, A., Bellinfante, N., Bárcenas-Moreno, G., Mataix-Solera, J., Granged, A.J., Granja-Martins, F.M., Neto-Paixão, H.M., 2013. Water repellency as conditioned by particle size and drying in hydro-phobized sand. Geoderma, 209–210, 31–40.10.1016/j.geoderma.2013.05.022
  23. Graber, E.R., Ben-Arie, O., Wallach, R., 2006. Effect of sample disturbance on soil water repellency determination in sandy soils. Geoderma, 136, 1–2, 11–19.10.1016/j.geoderma.2006.01.007
  24. Graber, E.R., Tagger, S., Wallach, R., 2009. Role of divalent fatty acid salts in soil water repellency. Soil Sci. Soc. Am. J., 73, 2, 541–549.10.2136/sssaj2008.0131
  25. Gypser, S., Veste, M., Fischer, T., Lange, P., 2016. Infiltration and water retention of biological soil crusts on reclaimed soils of former open-cast lignite mining sites in Brandenburg, north-east Germany. J. Hydrol. Hydromech., 64, 1, 1–11.10.1515/johh-2016-0009
  26. Hagemann, M., Henneberg, M., Felde, V.J.M.N.L., Drahorad, S.L., Berkowicz, S.M., Felix-Henningsen, P., Kaplan, A., 2015. Cyanobacterial diversity in biological soil crusts along a precipitation gradient, Northwest Negev Desert, Israel. Microb. Ecol., 70, 1, 219–230.10.1007/s00248-014-0533-z
  27. Harper, R.J., McKissock, I., Gilkes, R.J., Carter, D.J., Blackwell, P.S., 2000. A multivariate framework for interpreting the effects of soil properties, soil management and landuse on water repellency. J. Hydrol., 231, 371–383.10.1016/S0022-1694(00)00209-2
  28. Henss, A., Otto, S.-K., Schaepe, K., Pauksch, L., Lips, K.S., Rohnke, M., 2018. High resolution imaging and 3D analysis of Ag nanoparticles in cells with ToF-SIMS and delayed extraction. Biointerphases, 13, 3, 03B410.10.1116/1.501595729490464
  29. Iovino, M., Pekárová, P., Hallett, P. D., Pekár, J., Lichner, Ľ., Mataix-Solera, J., Alagna, V., Walsh, R., Raffan, A., Schacht, K., Rodný, M., 2018. Extent and persistence of soil water repellency induced by pines in different geographic regions. J. Hydrol. Hydromech., 66, 4, 360–368.10.2478/johh-2018-0024
  30. Jacobs, A.F., Heusinkveld, B.G., Berkowicz, S.M., 2000. Dew measurements along a longitudinal sand dune transect, Negev Desert, Israel. Int. J. Biometeorol., 43, 4, 184–190.10.1007/s00484005000710789921
  31. Jia, R., Gao, Y., Liu, L., Yang, H., Zhao, Y., 2020. Effect of sand burial on the subcritical water repellency of a dominant moss crust in a revegetated area of the Tengger Desert, Northern China. J. Hydrol. Hydromech., 68, 3, 279–284.10.2478/johh-2020-0025
  32. Keck, H., Felde, V.J.M.N.L., Drahorad, S.L., Felix-Henningsen, P., 2016. Biological soil crusts cause subcritical water repellency in a sand dune ecosystem located along a rainfall gradient in the NW Negev desert, Israel. J. Hydrol. Hydromech., 64, 2, 133–140.10.1515/johh-2016-0001
  33. Kidron, G.J., Büdel, B., 2014. Contrasting hydrological response of coastal and desert biocrusts. Hydrol. Process., 28, 2, 361–371.10.1002/hyp.9587
  34. Kidron, G.J., Vonshak, A., Abeliovich, A., 2009. Microbiotic crusts as biomarkers for surface stability and wetness duration in the Negev Desert. Earth Surf. Process. Landforms, 34, 12, 1594–1604.10.1002/esp.1843
  35. Kidron, G.J., Xiao, B., Benenson, I., 2020. Data variability or paradigm shift? Slow versus fast recovery of biological soil crusts-a review. Sci. Total Environ., 721, 137683.10.1016/j.scitotenv.2020.137683
  36. Kögel-Knabner, I., 2002. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol. Biochem., 34, 2, 139–162.10.1016/S0038-0717(01)00158-4
  37. Leelamanie, D.A.L., Karube, J., 2009. Effects of hydrophobic and hydrophilic organic matter on the water repellency of model sandy soils. Soil Sci. Plant Nutri., 55, 4, 462–467.10.1111/j.1747-0765.2009.00388.x
  38. Letey, J., Carrillo, M.L.K., Pang, X.P., 2000. Approaches to characterize the degree of water repellency. Journal of Hydrology, 231, 61–65.10.1016/S0022-1694(00)00183-9
  39. Lichner, L., Felde, V.J., Büdel, B., Leue, M., Gerke, H.H., Ellerbrock, R.H., Kollár, J., Rodný, M., Šurda, P., Fodor, N., Sándor, R., 2018. Effect of vegetation and its succession on water repellency in sandy soils. Ecohydrol., 11, 6, e1991.10.1002/eco.1991
  40. Lichner, L., Hallett, P.D., Drongová, Z., Czachor, H., Kovacik, L., Mataix-Solera, J., Homolák, M., 2013. Algae influence the hydrophysical parameters of a sandy soil. Catena, 108, 58–68.10.1016/j.catena.2012.02.016
  41. Lichner, Ľ., Holko, L., Zhukova, N., Schacht, K., Rajkai, K., Fodor, N., Sándor, R., 2012. Plants and biological soil crust influence the hydrophysical parameters and water flow in an aeolian sandy soil. J. Hydrol. Hydromech., 60, 4, 309–318.10.2478/v10098-012-0027-y
  42. Littmann, T., Schultz, A., 2008. Atmospheric input of nutrient elements and dust into the sand dune field of the northwestern Negev. In: Breckle, S.-W., Yair, A., Veste, M. (Eds.): Arid Dune Ecosystems. Springer, Berlin, Heidelberg, pp. 271–284.10.1007/978-3-540-75498-5_19
  43. Mataix-Solera, J., Arcenegui, V., Guerrero, C., Mayoral, A.M., Morales, J., González, J., García-Orenes, F., Gómez, I., 2007. Water repellency under different plant species in a calcareous forest soil in a semiarid Mediterranean environment. Hydrol. Process., 21, 17, 2300–2309.10.1002/hyp.6750
  44. McKissock, I., Walker, E., Gilkes, R., Carter, D., 2000. The influence of clay type on reduction of water repellency by applied clays: a review of some West Australian work. J. Hydrol., 231–232, 323–332.10.1016/S0022-1694(00)00204-3
  45. Miralles, I., Ladrón de Guevara, M., Chamizo, S., Rodríguez-Caballero, E., Ortega, R., van Wesemael, B., Cantón, Y., 2018. Soil CO2 exchange controlled by the interaction of biocrust successional stage and environmental variables in two semiarid ecosystems. Soil Biol. Biochem., 124, 11–23.10.1016/j.soilbio.2018.05.020
  46. Morley, C.P., Mainwaring, K.A., Doerr, S.H., Douglas, P., Llewellyn, C.T., Dekker, L.W., 2005. Organic compounds at different depths in a sandy soil and their role in water repellency. Soil Res., 43, 3, 239.10.1071/SR04094
  47. Nierop, K.G., van Lagen, B., Buurman, P., 2001. Composition of plant tissues and soil organic matter in the first stages of a vegetation succession. Geoderma, 100, 1–2, 1–24.10.1016/S0016-7061(00)00078-1
  48. Roper, M.M., 2005. Managing soils to enhance the potential for bioremediation of water repellency. Soil Res., 43, 7, 803.10.1071/SR05061
  49. Rozenstein, O., Zaady, E., Katra, I., Karnieli, A., Adamowski, J., Yizhaq, H., 2014. The effect of sand grain size on the development of cyanobacterial biocrusts. Aeol. Research, 15, 217–226.10.1016/j.aeolia.2014.08.003
  50. Smidt, E, Lechner, P., Schwanninger, M., Haberhauer, G., Gerzabek, M. H., 2002. Characterization of Waste Organic Matter by FT-IR Spectroscopy: Application in Waste Science. Appl. Spectrosc., AS 56, 9, 1170–1175.10.1366/000370202760295412
  51. Tatzber, M., Stemmer, M., Spiegel, H., Katzlberger, C., Haberhauer, G., Gerzabek, M.H., 2007. An alternative method to measure carbonate in soils by FT-IR spectroscopy. Environ. Chem. Lett., 5, 1, 9–12.10.1007/s10311-006-0079-5
  52. Tighe, M., Haling, R.E., Flavel, R.J., Young, I.M., 2012. Ecological succession, hydrology and carbon acquisition of biological soil crusts measured at the micro-scale. PloS One, 7, 10, e48565.10.1371/journal.pone.0048565348411823119058
  53. Vickerman, J.S., Gilmore, I.S., (Eds.), 2009. Surface Analysis-Principal Techniques. 2nd Ed. John Wiley and Sons.10.1002/9780470721582
  54. Vogelmann, E.S., Reichert, J.M., Prevedello, J., Consensa, C., Oliveira, A., Awe, G.O., Mataix-Solera, J., 2013. Threshold water content beyond which hydrophobic soils become hydrophilic: The role of soil texture and organic matter content. Geoderma, 209–210, 177–187.10.1016/j.geoderma.2013.06.019
  55. Wang, X.Y., Zhao, Y., Horn, R., 2010. Soil wettability as affected by soil characteristics and land use. Pedosphere, 20, 1, 43–54.10.1016/S1002-0160(09)60281-2
  56. Woche, S.K., Goebel, M.-O., Kirkham, M.B., Horton, R., van der Ploeg, R.R., Bachmann, J., 2005. Contact angle of soils as affected by depth, texture, and land management. Euro. J. Soil Sci., 56, 2, 239–251.10.1111/j.1365-2389.2004.00664.x
  57. Zavala, L.M., González, F.A., Jordán, A., 2009. Intensity and persistence of water repellency in relation to vegetation types and soil parameters in Mediterranean SW Spain. Geoderma, 152, 3–4, 361–374.10.1016/j.geoderma.2009.07.011
  58. Zheng, W., Morris, E.K., Lehmann, A., Rillig, M.C., 2016. Interplay of soil water repellency, soil aggregation and organic carbon. A meta-analysis. Geoderma, 283, 39–47.10.1016/j.geoderma.2016.07.025
DOI: https://doi.org/10.2478/johh-2021-0022 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 369 - 377
Submitted on: Mar 30, 2021
|
Accepted on: Jul 13, 2021
|
Published on: Nov 15, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Sylvie Laureen Drahorad, Vincent J. M. N. L. Felde, Ruth H. Ellerbrock, Anja Henss, published by Slovak Academy of Sciences, Institute of Hydrology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.