Have a personal or library account? Click to login
Evaluation of soil properties in variously aged Scots pine plantations established on sandy soil Cover

Evaluation of soil properties in variously aged Scots pine plantations established on sandy soil

Open Access
|Aug 2021

References

  1. Achilles, F., Tischer, A., Bernhardt-Romermann, M., Heinze, M., Reinhardt, F., Makeschin, F., Michalzik, B., 2021. European beech leads to more bioactive humus forms but stronger mineral soil acidification as Norway spruce and Scots pine - Results of a repeated site assessment after 63 and 82 years of forest conversion in Central Germany. Forest Ecology and Management, 483, Article Number: 118769. DOI: 10.1016/j.foreco.2020.11876910.1016/j.foreco.2020.118769
  2. Ahtikoski, A., Alenius, V., Makitalo, K., 2010. Scots pine stand establishment with special emphasis on uncertainty and cost-effectiveness, the case of northern Finland. New Forests, 40, 69–84.10.1007/s11056-009-9183-2
  3. Alagna, V., Iovino, M., Bagarello, V., Mataix-Solera, J., Lichner, Ľ., 2017. Application of minidisk infiltrometer to estimate water repellency in Mediterranean pine forest soils. Journal of Hydrology and Hydromechanics, 65, 254–263.10.1515/johh-2017-0009
  4. Alagna, V., Iovino, M., Bagarello, V., Mataix-Solera, J., Lichner, L., 2019. Alternative analysis of transient infiltration experiment to estimate soil water repellency. Hydrological Processes, 33, 661–674.10.1002/hyp.13352
  5. Benito, E., Varela, E., Rodríguez-Alleres, M., 2019. Persistence of water repellency in coarse-textured soils under various types of forests in NW Spain. Journal of Hydrology and Hydromechanics, 67, 2, 129–134.10.2478/johh-2018-0038
  6. Bisdom, E.B.A., Dekker, L.W., Schoute, J.F.T., 1993. Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure. Geoderma, 56, 105–118.10.1016/B978-0-444-81490-6.50013-3
  7. Bolte, A., Villanueva, I., 2005. Interspecific competition impacts on the morphology and distribution of fine roots in European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.). Eur. J. Forest Res., 125, 15–26. https://doi.org/10.1007/s10342-005-0075-510.1007/s10342-005-0075-5
  8. Buczko, U., Bens, O., Fischer, H., Hüttl, R.F., 2002. Water repellency in sandy luvisols under different forest transformation stages in northeast Germany. Geoderma, 109, 1–18.10.1016/S0016-7061(02)00137-4
  9. Buczko, U., Bens, O., Hüttl, R.F., 2005. Variability of soil water repellency in sandy forest soils with different stand structure under Scots pine (Pinus sylvestris) and beech (Fagus sylvatica). Geoderma, 126, 3–4, 317–336.10.1016/j.geoderma.2004.10.003
  10. Cesarano, G., Incerti, G., Bonanomi, G., 2016. The influence of plant litter on soil water repellency: insight from 13C NMR spectroscopy. PLoS One, 11, 3, Article Number: e0152565.10.1371/journal.pone.0152565481156627022916
  11. Clothier, B.E., Vogeler, I., Magesan, G.N., 2000. The breakdown of water repellency and solute transport through a hydrophobic soil. Journal of Hydrology, 231–232, 255–264.10.1016/S0022-1694(00)00199-2
  12. Decagon, 2007. Minidisk Infiltrometer User’s Manual. Decagon Devices, Inc., Pullman.
  13. Diehl, D., 2013. Soil water repellency: Dynamics of heterogeneous surfaces. Colloids and Surfaces A: Physicochem. Eng. Aspects, 432, 8–18.10.1016/j.colsurfa.2013.05.011
  14. Doerr, S.H., 1998. On standardizing the “Water Drop Penetration Time” and the “Molarity of an Ethanol Droplet” techniques to classify soil hydrophobicity: a case study using medium textured soils. Earth Surface Processes and Land-forms, 23, 663–668.10.1002/(SICI)1096-9837(199807)23:7<663::AID-ESP909>3.0.CO;2-6
  15. Doerr, S.H., Shakesby, R.A., Walsh, R.P.D., 2000. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Science Reviews, 51, 33–65.10.1016/S0012-8252(00)00011-8
  16. Fér, M., Leue, M., Kodešová, R., Gerke, H.H., Ellerbrock, R.H., 2016. Droplet infiltration dynamics and soil wettability related to soil organic matter of soil aggregate coatings. Journal of Hydrology and Hydromechanics, 64, 111–120.10.1515/johh-2016-0021
  17. Goebel, M.-O., Bachmann, J., Woche, S.K., Fischer, W.R., 2005. Soil wettability, aggregate stability, and the decomposition of soil organic matter. Geoderma, 128, 80–93.10.1016/j.geoderma.2004.12.016
  18. Hallett, P.D., Young, I.M., 1999. Changes to water repellence of soil aggregates caused by substrate-induced microbial activity. European Journal of Soil Science, 50, 35–40.10.1046/j.1365-2389.1999.00214.x
  19. Hewelke, E., Oktaba, L., Gozdowski, D., Kondras, M., Olejniczak, I., Górska, E.B., 2018. Intensity and persistence of soil water repellency in pine forest soil in a temperate continental climate under drought conditions. Water, 10, 9, Article Number: 1121.10.3390/w10091121
  20. Hrabovský, A., Dlapa, P., Cerda, A., Kollár, J., 2020. The impacts of vineyard afforestation on soil properties, water repellency and near-saturated infiltration in the Little Carpathians mountains. Water, 12, Article Number: 2550.10.3390/w12092550
  21. Iovino, M., Pekárová, P., Hallett, P.D., Pekár, J., Lichner, L., Mataix-Solera, J., Alagna, V., Walsh, R., Raffan, A., Schacht, K., Rodný, M., 2018. Extent and persistence of soil water repellency induced by pines in different geographic regions. Journal of Hydrology and Hydromechanics, 66, 360–368.10.2478/johh-2018-0024
  22. ISO 10390, 2005. Soil quality. Determination of pH. International Organization of Standardization, Geneva. (https://www.iso.org/standard/40879.html)
  23. ISO 10693, 1995. Soil quality. Determination of carbonate content. Volumetric method. International Organization of Standardization, Geneva. (https://www.iso.org/standard/18781.html)
  24. ISO 10694, 1995. Soil quality. Determination of organic and total carbon after dry combustion (elementary analysis). International Organization of Standardization, Geneva. (https://www.iso.org/standard/18782.html)
  25. ISO 11277, 2009. Soil quality. Determination of particle size distribution in mineral soil material. Method by sieving and sedimentation. International Organization of Standardization, Geneva. (https://www.iso.org/standard/54151.html)
  26. Jandl, R., Lindner, M., Vesterdal, L., Bauwens, B., Baritz, R., Hagedorn, F., Johnson, D.W., Minkkinen, K., Byrne, K.A., 2007. How strongly can forest management influence soil carbon sequestration? Geoderma, 137, 3–4, 253–268.10.1016/j.geoderma.2006.09.003
  27. Kalivodová, E., Kubíček, F., Bedrna, Z., Kalivoda, H., Gavlas, V., Kollár, J., Gajdoš, P., Štepanovičová, O., 2002. Sand dunes of Slovakia. Luka-Press, Bratislava, 60 p. (In Slovak.)
  28. Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259–263.10.1127/0941-2948/2006/0130
  29. Krippel, E., 1965. Post-glacial development of forests in the Záhorská nížina lowland. Biol. práce, Bratislava, 11, 3, 1–100. (In Slovak.)
  30. Leelamanie, D.A.L., Nishiwaki, J., 2019. Water repellency in Japanese coniferous forest soils as affected by drying temperature and moisture. Biologia, 74, 127–137.10.2478/s11756-018-0157-8
  31. Lichner, Ľ., Babejová, N., Dekker, L.W., 2002. Effects of kaolinite and drying temperature on the persistence of soil water repellency induced by humic acids. Rostlinná Výroba, 48, 203–207.10.17221/4225-PSE
  32. Lichner, L., Capuliak, J., Zhukova, N., Holko, L., Czachor, H., Kollár, J., 2013. Pines influence hydrophysical parameters and water flow in a sandy soil. Biologia, 68, 1104–1108.10.2478/s11756-013-0254-7
  33. Lichner, L., Felde, V.J.M.N.L., Büdel, B., Leue, M., Gerke, H.H., Ehlerbrock, R.H., Kollár, J., Rodný, M., Šurda, P., Fodor, N., Sándor, R., 2018. Effect of vegetation and its succession on water repellency in sandy soils. Ecohydrology, 11, 6, Article Number: UNSP e1991.10.1002/eco.1991
  34. Lichner, Ľ., Alagna, V., Iovino, M., Laudicina, V.A., Novák, V., 2020a. Evaporation from soils of different texture covered by layers of water repellent and wettable soils. Biologia, 75, 6, 865–872.10.2478/s11756-020-00471-5
  35. Lichner, L., Iovino, M., Šurda, P., Nagy, V., Zvala, A., Kollár, J., Pecho, J., Píš, V., Sepehrnia, N., Sándor, R., 2020b. Impact of secondary succession in abandoned fields on some properties of acidic sandy soils. Journal of Hydrology and Hydromechanics, 68, 1, 12–18.10.2478/johh-2019-0028
  36. Löf, M., Rydberg, D., Bolte, A., 2006. Mounding site preparation for forest restoration: Survival and growth responses in Quercus robur L. seedlings. For. Ecol. Manage., 232, 1–3, 19–25.10.1016/j.foreco.2006.05.003
  37. Löf, M., Dey, D.C., Navarro, R.M., Jacobs, D.F., 2012. Mechanical site preparation for forest restoration. New Forests, 43, 825–848.10.1007/s11056-012-9332-x
  38. Luoranen, J., Rikala, R., 2013. Field performance of Scots pine (Pinus sylvestris L.) seedlings planted in disc trenched or mounded sites over an extended planting season. New Forests, 44, 147–162.10.1007/s11056-012-9307-y
  39. Marhold, K., Hindák, F., 1998. Checklist of Nonvascular and Vascular Plants of Slovakia. Veda, Bratislava, 687 p. (In Slovak.)
  40. McKissock, I., Walker, E.L., Gilkes, R.J., Carter, D.J., 2000. The influence of clay type on reduction of water repellency by applied clays: a review of some West Australian work. Journal of Hydrology, 231–232, 323–332.10.1016/S0022-1694(00)00204-3
  41. NCSS 12 Statistical Software, 2018. NCSS, LLC. Kaysville, Utah, USA, ncss.com/software/ncss.
  42. Pekárová, P., Pekár, J., Lichner, Ľ., 2015. A new method for estimating soil water repellency index. Biologia, 70, 1450–1455.10.1515/biolog-2015-0178
  43. Piyaruwan, H.I.G.S., Jayasinghe, P.K.S.C., Leelamanie, D.A.L., 2020. Water repellency in eucalyptus and pine plantation forest soils and its relation to groundwater levels estimated with multi-temporal modeling. Journal of Hydrology and Hydromechanics, 68, 4, 382–391.10.2478/johh-2020-0030
  44. Reynolds, W.D., Elrick, D.E., Youngs, E.G., Amoozegar, A., Booltink, H.W.G., Bouma, J., 2002. Saturated and field-saturated water flow parameters. In: Dane, J.H., Topp, G.C. (Eds.): Methods of Soil Analysis, Part 4. Soil Science Society of America, Inc., Madison, pp. 797–878.
  45. Roper, M.M., 2005. Managing soils to enhance the potential for bioremediation of water repellency. Australian Journal of Soil Research, 43, 803–810.10.1071/SR05061
  46. Roper, M.M., 2006. Potential for remediation of water repellent soils by inoculation with wax-degrading bacteria in southwestern Australia. Biologia, 61, Suppl. 19, S358–S362.10.2478/s11756-006-0189-3
  47. Rye, C.F., Smettem, K.R.J., 2017. The effect of water repellent soil surface layers on preferential flow and bare soil evaporation. Geoderma, 289, 142–149.10.1016/j.geoderma.2016.11.032
  48. Sarvaš, M., Tučeková, A., Takáčová, E., Chválová, K., Lengyelová, A., Varínsky, J., Longauerová, V., Sušková, M., 2007. Forest establishment in changing ecological conditions. Národné lesnícke centrum, Zvolen, 107 p. (In Slovak.)
  49. Soil Survey Division Staff, 1993. Soil Survey Manual. Soil Conservation Service. U.S. Department of Agriculture Handbook, 18 p.
  50. Šomšák, L., Šimonovič, V., Kollár J., 2003. Phytocoenoses of pine forests in the central part of the Záhorská nížina Lowland. Biologia, Bratislava, 59, 101–113.
  51. Šurda, P., Lichner, Ľ., Nagy, V., Kollár, J., Iovino, M., Horel, Á., 2015. Effects of vegetation at different succession stages on soil properties and water flow in sandy soil. Biologia, 70, 11, 1474–1479.10.1515/biolog-2015-0172
  52. Sutton, R.F., 1993. Mounding site preparation: A review of European and North American experience. New Forests, 7, 151–192.10.1007/BF00034198
  53. Tinebra, I., Alagna, V., Iovino, M., Bagarello, V., 2019. Comparing different application procedures of the water drop penetration time test to assess soil water repellency in a fire affected Sicilian area. Catena, 177, 41–48.10.1016/j.catena.2019.02.005
  54. Turfan, N., Alay, M., Sariyildiz, T., 2018. Effect of tree age on chemical compounds of ancient Anatolian black pine (Pinus nigra subsp. pallasiana) needles in Northwest Turkey. iForest, 11, 406–410.10.3832/ifor2665-011
  55. Villarreal, R., Lozano, L.A., Melani, E.M., Salazar, M.P., Otero, M.F., Soracco, C.G., 2019. Diffusivity and sorptivity determination at different soil water contents from horizontal infiltration. Geoderma, 338, 88–96.10.1016/j.geoderma.2018.11.045
  56. WRB, 2014. World Reference Base for Soil Resources 2014. World Soil Resources Reports No. 106. Rome, 192 p.
  57. Zavala, L.M., González, F.A., Jordán, A., 2009. Intensity and persistence of water repellencyin relation to vegetation types and soil parameters in Mediterranean SW Spain. Geoderma, 152, 361–374.10.1016/j.geoderma.2009.07.011
  58. Zema, D.A., Plaza-Alvarez, P.A., Xu, X.Z., Carra, B.G., Lucas-Borja, M.E., 2021. Influence of forest stand age on soil water repellency and hydraulic conductivity in the Mediterranean environment. Science of the Total Environment, 753, Article Number: 142006.10.1016/j.scitotenv.2020.14200632890878
  59. Zhang, R., 1997. Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Science Society of America Journal, 61, 1024–1030.10.2136/sssaj1997.03615995006100040005x
DOI: https://doi.org/10.2478/johh-2021-0012 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 347 - 355
Submitted on: Mar 25, 2021
Accepted on: May 12, 2021
Published on: Aug 10, 2021
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Peter Šurda, Ľubomír Lichner, Jozef Kollár, Anton Zvala, Dušan Igaz, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.