Have a personal or library account? Click to login
Water transmission properties of a sandy-loam soil estimated with Beerkan runs differing by the infiltration time criterion Cover

Water transmission properties of a sandy-loam soil estimated with Beerkan runs differing by the infiltration time criterion

Open Access
|May 2021

References

  1. Alagna, V., Bagarello, V., Cecere, N., Concialdi, P., Iovino, M., 2018. A test of water pouring height and run intermittence effects on single-ring infiltration rates. Hydrol. Process., 32, 3793–3804. DOI: 10.1002/hyp.1329010.1002/hyp.13290
  2. Alagna, V., Bagarello, V., Di Prima, S., Giordano, G., Iovino, M., 2016. Testing infiltration run effects on the estimated water transmission properties of a sandy-loam soil. Geoderma, 267, 24–33. DOI: 10.1016/j.geoderma.2015.12.02910.1016/j.geoderma.2015.12.029
  3. Angulo-Jaramillo, R., Bagarello, V., Di Prima, S., Gosset, A., Iovino, M., Lassabatere, L., 2019. Beerkan Estimation of Soil Transfer parameters (BEST) across soils and scales. Invited Review Paper. J. Hydrol., 576, 239–261. DOI: 10.1016/j.jhydrol.2019.06.00710.1016/j.jhydrol.2019.06.007
  4. Angulo-Jaramillo, R., Bagarello, V., Iovino, M., Lassabatere, L., 2016. Infiltration Measurements for Soil Hydraulic Characterization. Springer International Publishing, Cham, 383 p.10.1007/978-3-319-31788-5
  5. Auteri, N., Bagarello, V., Concialdi, P., Iovino, M., 2020. Testing an adapted beerkan infiltration run for a hydrologically relevant soil hydraulic characterization. J. Hydrol., 584, 12469714. DOI: 10.1016/j.jhydrol.2020.12469710.1016/j.jhydrol.2020.124697
  6. Bagarello, V., David, S.M., 2020. Run duration effects on the hydrodynamic properties of a loam soil estimated by steady-state infiltration methods. Journal of Agricultural Engineering, 51, 4, 229–238. DOI:10.4081/jae.2020.107510.4081/jae.2020.1075
  7. Bagarello, V., Sgroi, A., 2007. Using the simplified falling head technique to detect temporal changes in field-saturated hydraulic conductivity at the surface of a sandy loam soil. Soil Till. Res., 94, 283–294.10.1016/j.still.2006.08.001
  8. Bagarello, V., Di Prima, S., Iovino, M., 2014. Comparing alternative algorithms to analyze the beerkan infiltration experiment. Soil Sci. Soc. Am. J., 78, 724–736. DOI: 10.2136/sssaj2013.06.023110.2136/sssaj2013.06.0231
  9. Braud, I., De Condappa, D., Soria, J.M., Haverkamp, R., Angulo-Jaramillo, R., Galle, S., Vauclin, M., 2005. Use of scaled forms of the infiltration equation for the estimation of un-saturated soil hydraulic properties (the Beerkan method). Eur. J. Soil Sci., 56, 361–374.10.1111/j.1365-2389.2004.00660.x
  10. Cislerova, M., Simunek, J., Vogel, T., 1988. Changes of steady-state infiltration rates in recurrent ponding infiltration experiments. J. Hydrol., 104, 1–16.10.1016/0022-1694(88)90154-0
  11. Concialdi, P., Di Prima, S., Bhanderi, H.M., Stewart, R.D., Abou Najm, M.R., Lal Gaur, M., Angulo-Jaramillo, R., Lassabatere, L., 2020. An open-source instrumentation package for intensive soil hydraulic characterization. J. Hydrol., 582, 124492. DOI: 10.1016/j.jhydrol.2019.12449210.1016/j.jhydrol.2019.124492
  12. Di Prima, S., 2015. Automated single ring infiltrometer with a low-cost microcontroller circuit. Comput. Electron. Agr., 118, 390–395.10.1016/j.compag.2015.09.022
  13. Di Prima, S., Lassabatere, L., Bagarello, V., Iovino, M., Angulo-Jaramillo, R., 2016. Testing a new automated single ring infiltrometer for Beerkan infiltration experiments. Geoderma 262, 20–34. DOI: 10.1016/j.geoderma.2015.08.00610.1016/j.geoderma.2015.08.006
  14. Di Prima, S., Concialdi, P., Lassabatere, L., Angulo-Jaramillo, R., Pirastru, M., Cerdà, A., Keesstra, S., 2018. Laboratory testing of Beerkan infiltration experiments for assessing the role of soil sealing on water infiltration. Catena, 167, 373–384. DOI: 10.1016/j.catena.2018.05.01310.1016/j.catena.2018.05.013
  15. Di Prima, S., Stewart, R.D., Castellini, M., Bagarello, V., Abou Najm, M.R., Pirastru, M., Giadrossich, F., Iovino, M., Angulo-Jaramillo, R., Lassabatere, L., 2020. Estimating the macroscopic capillary length from Beerkan infiltration experiments and its impact on saturated soil hydraulic conductivity predictions. J. Hydrol., 589, 125159. DOI: 10.1016/j.jhydrol.2020.12515910.1016/j.jhydrol.2020.125159
  16. Dohnal, M., Vogel, T., Dusek, J., Votrubova, J., Tesar, M., 2016. Interpretation of ponded infiltration data using numerical experiments. J. Hydrol. Hydromech., 64, 3, 289–299.10.1515/johh-2016-0020
  17. Dušek, J., Dohnal, M., Vogel, T., 2009. Numerical analysis of ponded infiltration experiment under different experimental conditions. Soil Water Res., 4, S22–S27.10.17221/1368-SWR
  18. Elrick, D.E., Reynolds, W.D., 1992a. Infiltration from constant-head well permeameters and infiltrometers. In: Topp, G.C., Reynolds, W.D., Green, R.E. (Eds.): Advances in measurement of soil physical properties: Bringing theory into practice (SSSA special publication no. 30, pp. 1–24). Madison: Soil Science Society of America, Inc.10.2136/sssaspecpub30.c1
  19. Elrick, D.E., Reynolds, W.D., 1992b. Methods for analyzing constant-head well permeameter data. Soil Sci. Soc. Am. J., 56, 320–323.10.2136/sssaj1992.03615995005600010052x
  20. Haverkamp, R., Ross, P.J., Smettem, K.R.J., Parlange, J.Y., 1994. Three-dimensional analysis of infiltration from the disc infiltrometer. 2. Physically-based infiltration equation. Water Resour. Res., 30, 2931–2935.10.1029/94WR01788
  21. Iovino, M., Castellini, M., Bagarello, V., Giordano, G., 2016. Using static and dynamic indicators to evaluate soil physical quality in a Sicilian area. Land Degrad. Dev., 27, 200–210. DOI: 10.1002/ldr.226310.1002/ldr.2263
  22. Iovino, M., Angulo-Jaramillo, R., Bagarello, V., Gerke, H.H., Jabro, J., Lassabatere, L., 2017. Thematic Issue on Soil Water Infiltration. J. Hydrol. Hydromech., 65, 3, 205–208. DOI: 10.1515/johh-2017-003610.1515/johh-2017-0036
  23. Lassabatere, L., Angulo-Jaramillo, R., Soria Ugalde, J.M., Cuenca, R., Braud, I., Haverkamp, R. 2006. Beerkan estimation of soil transfer parameters through infiltration experiments -BEST. Soil Sci. Soc. Am. J., 70, 2, 521–535. DOI: 10.2136/sssaj2005.002610.2136/sssaj2005.0026
  24. Lassabatere, L., Di Prima, S., Bouarafa, S., Iovino, M., Bagarello, V., Angulo-Jaramillo, R., 2019a. BEST-2K method for characterizing dual-permeability unsaturated soils with ponded and tension infiltrometers. Vadose Zone J., 18, 180124. DOI: 10.2136/vzj2018.06.012410.2136/vzj2018.06.0124
  25. Lassabatere, L., Di Prima, S., Angulo-Jaramillo, R., Keesstra, S., Salesa, D., 2019b. Beerkan multi-runs for characterizing water infiltration and spatial variability of soil hydraulic properties across scales. Hydrolog. Sci. J., 64, 2, 165–178. DOI: 10.1080/02626667.2018.156044810.1080/02626667.2018.1560448
  26. Lassabatere, L., Yilmaz, D., Peyrard, X., Peyneau, P.E., Lenoir, T., Šimůnek, J., Angulo-Jaramillo, R., 2014. New analytical model for cumulative infiltration into dual-permeability soils. Vadose Zone Journal, 13, 1–15. DOI: 10.2136/vzj2013.10.018110.2136/vzj2013.10.0181
  27. Lee, D.M., Reynolds, W.D., Elrick, D.E., Clothier, B.E., 1985. A comparison of three field methods for measuring saturated hydraulic conductivity. Can. J. Soil Sci., 65, 563–573.10.4141/cjss85-060
  28. Lilliefors, H.W., 1967. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc., 62, 318, 399–402.10.1080/01621459.1967.10482916
  29. Mubarak, I., Mailhol, J.C., Angulo-Jaramillo, R., Ruelle, P., Boivin, P., Khaledian, M., 2009. Temporal variability in soil hydraulic properties under drip irrigation. Geoderma, 150, 158–165.10.1016/j.geoderma.2009.01.022
  30. Ndiaye, B., Esteves, M., Vandervaere, J.-P., Lapetite, J.-M., Vauclin, M., 2005. Effect of rainfall and tillage direction on the evolution of surface crusts, soil hydraulic properties and runoff generation for a sandy loam soil. J. Hydrol., 307, 1–4, 294–311. DOI: 10.1016/j.jhydrol.2004.10.01610.1016/j.jhydrol.2004.10.016
  31. Picciafuoco, T., Morbidelli, R., Flammini, A., Saltalippi, C., Corradini, C., Strauss, P., Blöschl, G., 2019. On the estimation of spatially representative plot scale saturated hydraulic conductivity in an agricultural setting. J. Hydrol., 570, 106–117. DOI: 10.1016/j.jhydrol.2018.12.04410.1016/j.jhydrol.2018.12.044
  32. Reynolds, W.D., Elrick, D.E., 1990. Ponded infiltration from a single ring: I. Analysis of steady flow. Soil Sci. Soc. Am. J., 54, 1233–1241.10.2136/sssaj1990.03615995005400050006x
  33. Reynolds, W.D., Gregorich, E.G., Curnoe, W.E., 1995. Characterisation of water transmission properties in tilled and untilled soils using tension infiltrometers. Soil Till. Res., 33, 2, 117‒131.10.1016/0167-1987(94)00437-J
  34. Reynolds, W.D., Bowman, B.T., Brunke, R.R., Drury, C.F., Tan, C.S., 2000. Comparison of tension infiltrometer, pressure infiltrometer, and soil core estimates of saturated hydraulic conductivity. Soil Sci. Soc. Am. J., 64, 478–484. DOI: 10.2136/sssaj2000.642478x10.2136/sssaj2000.642478x
  35. Smith, R.E., 1999. Technical note: Rapid measurement of soil sorptivity. Soil Sci. Soc. Am. J., 63, 55–57.10.2136/sssaj1999.03615995006300010009x
  36. Souza, E.S., Antonino, A.C.D., Heck, R.J., Montenegro, S.M.G.L, Lima, J.R.S., Sampaio, E.V.S.B., Angulo-Jaramillo, R. Vauclin, M., 2014. Effect of crusting on the physical and hydraulic properties of a soil cropped with Castor bean (Ricinus Communis L.) in the northeastern region of Brasil. Soil Till. Res., 141, 55–61. DOI: 10.1016/j.still.2014.04. 004
  37. Touma, J., Voltz, M., Albergel, J., 2007. Determining soil saturated hydraulic conductivity and sorptivity from single ring infiltration tests. Eur. J. Soil Sci., 58, 1, 229–238. DOI: 10.1111/j.1365-2389.2006.00830.x10.1111/j.1365-2389.2006.00830.x
  38. Verbist, K.M.J., Cornelis, W.M., Torfs, S., Gabriels, D., 2013. Comparing methods to determine hydraulic conductivities on stony soils. Soil Sci. Soc. Am. J., 77, 25–42. DOI: 10.2136/sssaj2012.002510.2136/sssaj2012.0025
  39. White, I., Sully, M.J., 1987. Macroscopic and microscopic capillary length and time scales from field infiltration. Water Resour. Res., 23, 1514–1522.10.1029/WR023i008p01514
  40. White, I., Sully, M.J., Melville, M.D., 1989. Use and hydrological robustness of time-to-incipient-ponding. Soil Sci. Soc. Am. J., 53, 1343–1346.10.2136/sssaj1989.03615995005300050007x
  41. Wu, L., Pan, L., Roberson, M.J., Shouse, P.J., 1997. Numerical evaluation of ring-infiltrometers under various soil conditions. Soil Sci., 162, 11, 771–777.10.1097/00010694-199711000-00001
  42. Yilmaz, D., Lassabatere, L., Angulo-Jaramillo, R., Deneele, D., Legret, M., 2010. Hydrodynamic characterization of basic oxygen furnace slag through an adapted BEST method. Vadose Zone J., 9, 107. DOI: 10.2136/vzj2009.003910.2136/vzj2009.0039
DOI: https://doi.org/10.2478/johh-2021-0010 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 151 - 160
Submitted on: Feb 13, 2021
Accepted on: Apr 13, 2021
Published on: May 21, 2021
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Vincenzo Bagarello, Gaetano Caltabellotta, Massimo Iovino, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.