References
- Alletto, L., Coquet, Y., 2009. Temporal and spatial variability of soil bulk density and near-saturated hydraulic conductivity under two contrasted tillage management system. Geoderma, 152, 85–94.10.1016/j.geoderma.2009.05.023
- Cantón, Y., Solé–Benet, A., Asensio, C., Chamizo, S., Puigdefábregas, J., 2009. Aggregate stability in range sandy loam soils relationships with runoff and erosion. Catena, 77, 192–199.10.1016/j.catena.2008.12.011
- Centeno, L.N., Timm, L.C., Reichardt, K., Beskow, S., Caldeira, T.L., de Oliveira, L.M., Wendroth, O., 2020. Identifying regionalized co-variate driving factors to assess spatial distributions of saturated soil hydraulic conductivity using multivariate and state-space analyses. Catena, 191, 104583.10.1016/j.catena.2020.104583
- Chandrasekhar, P., Kreiselmeier, J., Schwen, A., Weninger, T., Julich, S., Feger, K.-H., Schwärzel, K., 2018. Why we should include soil structural dynamics of agricultural soils in hydrological models. Water, 10, 1862.10.3390/w10121862
- Dexter, A.R., 2004a. Soil physical quality Part I. Theory effect of soil texture density and organic matter and effect on root growth. Geoderma, 120, 201–214.10.1016/j.geoderma.2003.09.004
- Dexter, A.R., 2004b. Soil physical quality Part II. Friability tillage tilth and hard–setting. Geoderma, 120, 215–226.10.1016/j.geoderma.2003.09.005
- Dexter, A.R., 2004c. Soil physical quality Part III. Unsaturated hydraulic conductivity and general conclusions about S– theory. Geoderma, 120, 227–239.10.1016/j.geoderma.2003.09.006
- Dexter, A.R., Czyz, E.A., 2007. Application of S–theory in study of soil physical degradation and its consequences. Land Degrad. Dev., 18, 369–381.10.1002/ldr.779
- Elrick, D.E., Reynolds W.D., Tan, K.A., 1989. Hydraulic conductivity measurements in the unsaturated zone using improved well analyses. Ground Water Monit. Rev., 9, 184–193.10.1111/j.1745-6592.1989.tb01162.x
- Fér, M., Kodešová, R., Nikodem, A., Jirků, V., Jakšík, O., Němeček, K., 2016. The impact of the permanent grass cover or conventional tillage on hydraulic properties of Haplic Cambisol developed on paragneiss substrate. Biologia, 71, 10, 1144–1150.10.1515/biolog-2016-0133
- Fér, M., Kodešová, R., Nikodem, A., Jelenová, K., Klement, A., 2018. Influence of soil–water content on CO2 efflux within the elevation transect heavily impacted by erosion. Ecohydrology, 11, 6, e1989.10.1002/eco.1989
- Fér, M., Kodešová, R., Hroníková, S., Nikodem, A., 2020. The effect of 12-year ecological farming on the soil hydraulic properties and repellency index. Biologia, 75, 795–798.10.2478/s11756-019-00373-1
- Florinsky, I.V., Eilers, R.G., Manning, G.R., Fuller, L.G., 2002. Prediction of soil properties by digital terrain modelling. Environ. Model. Softw., 17, 3, 95–311.10.1016/S1364-8152(01)00067-6
- Gardner, W.R., 1958. Some steady state solutions of unsaturated moisture flow equations with application to evaporation from a water table. Soil Sci., 85, 228–232.10.1097/00010694-195804000-00006
- Gribb, M.M., Kodešová, R., Ordway, S.E., 2004. Comparison of soil hydraulic property measurement methods. J. Geotech. Geoenviron. Eng., 130, 1084–1095.10.1061/(ASCE)1090-0241(2004)130:10(1084)
- Grundwald, S. Ed., 2005. Environmental Soil–Landscape Modeling. CRC Press.
- Herbst, M., Diekkrüger, B., Vereecken, H., 2006. Geostatistical co–regionalization of soil hydraulic properties in a micro– scale catchment using terrain attributes. Geoderma, 132, 1–2, 206–221.10.1016/j.geoderma.2005.05.008
- IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.
- Jakšík, O., Kodešová, R., Kubiš, A., Stehlíková, I., Drábek, O., Kapička, A., 2015. Soil aggregate stability within morphologically diverse areas. Catena, 127, 287–299.10.1016/j.catena.2015.01.010
- Jakšík, O., Kodešová, R., Kapička, A., Klement, A., Fér, M., Nikodem, A., 2016. Using magnetic susceptibility mapping for assessing soil degradation due to water erosion. Soil Water Res., 11, 2, 105–113.10.17221/233/2015-SWR
- Jirků, V., Kodešová, R., Nikodem, A., Mühlhanselová, M., Žigová, A., 2013. Temporal variability of structure and hydraulic properties of topsoil of three soil types. Geoderma, 204–205, 43–58.10.1016/j.geoderma.2013.03.024
- Kodešová, R., Rohošková, M., Žigová, A., 2009. Comparison of aggregate stability within six soil profiles under conventional tillage using various laboratory tests. Biologia, 64, 3, 550–554.10.2478/s11756-009-0095-6
- Kodešová, R., Šimůnek, J., Nikodem, A., Jirků, V., 2010. Estimation of parameters of the radially-symmetric dual-permeability model using tension disc infiltrometer and Guelph permeameter experiments. Vadose Zone J., 9, 213–225.10.2136/vzj2009.0069
- Kodešová, R., Jirků, V., Kodeš, V., Mühlhanselová, M., Nikodem, A., Žigová, A., 2011. Soil structure and soil hydraulic properties of Haplic Luvisol used as arable land and grassland. Soil Till. Res., 111, 2, 154–161.10.1016/j.still.2010.09.007
- Lark, R.M., Beckett, P.H.T., 1998. A geostatistical descriptor of the spatial distribution of soil classes, and its use in predicting the purity of possible soil map units. Geoderma, 83, 3–4, 243–267.10.1016/S0016-7061(97)00144-4
- Lichner, L., Iovino, M., Šurda, P., Nagy, V., Zvala, A., Kollár, J., Pecho, J., Píš, V., Sepehrnia, N., Sándor, R., 2020. Impact of secondary succession in abandoned fields on some properties of acidic sandy soils. J. Hydrol. Hydromech., 68, 1, 12–18.10.2478/johh-2019-0028
- Mayer, S., Kühnel, A., Burmeister, J., Kögel-Knabner, I., Wiesmeier, M., 2019. Controlling factors of organic carbon stocks in agricultural topsoils and subsoils of Bavaria. Soil Till. Res., 192, 22–32.10.1016/j.still.2019.04.021
- Meter Group AG., 2020. Mini Disk Infiltrometer. Mettlacher Straße 8, München. http://publications.metergroup.com/Manuals/20421_Mini_Disk_Manual_Web.pdf
- Miller, B.A., Schaetzl, R.J., 2015. Digital classification of hillslope position. Soil Sci. Soc. Am. J., 79, 132–145.10.2136/sssaj2014.07.0287
- Moore, I.D., Gessler, P.E., Nielsen, G.A., Peterson, G.A., 1993. Soil attribute prediction using terrain analysis. Soil Sci. Soc. Am. J., 57, 443–452.10.2136/sssaj1993.03615995005700020026x
- Mualem, Y., 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res., 12, 3, 513–522.10.1029/WR012i003p00513
- Nikodem, A., Kodešová. R., Fér, M., Klement, A., 2021. Using scaling factors for characterizing spatial and temporal variability of soil hydraulic properties of topsoils in areas heavily affected by soil erosion. J. Hydrol., 593, 125897.10.1016/j.jhydrol.2020.125897
- Nimmo J.R., Perkins K.S., 2002. Aggregate stability and size distribution. In: Dane, J.H., Topp, G.C. (Eds.): Methods of Soil Analysis, Part 4 – Physical Methods. SSSA, Madison, pp. 317–328.10.2136/sssabookser5.4.c14
- Papanicolaou, A.N., Elhakeem, M., Wilson, C.G., Burras, C.L., West, L.T., Lin, H., Clark, B., Oneal, B.E., 2015. Spatial variability of saturated hydraulic conductivity at the hillslope scale: Understanding the role of land management and erosional effect. Geoderma, 243–244, 58–68.10.1016/j.geoderma.2014.12.010
- Pavlů, L., Kodešová, R., Fér, M., Nikodem, A., Němec, F., Prokeš, R, 2021. The impact of various mulch types on soil properties controlling water regime of the Haplic Fluvisol. Soil Till. Res., 205, 104748.10.1016/j.still.2020.104748
- Penížek, V., Zádorová, T., Kodešová, R., Vaněk, A., 2016. Influence of elevation data resolution on spatial prediction of colluvial soils in a luvisol region. PloS ONE, 11, 11, 165699.10.1371/journal.pone.0165699
- Pennock, D.J., 2003. Terrain attributes, landform segmentation, and soil redistribution. Soil Till. Res., 69, 15–26.10.1016/S0167-1987(02)00125-3
- Reynolds, W.D., Elrick, D.E., 1991. Determination of hydraulic conductivity using a pension infiltrometer. Soil Sci. Soc. Am. J., 55, 633–639.10.2136/sssaj1991.03615995005500030001x
- Reynolds, W.D., Elrick D.E., Youngs, E.G., Amoozegar, A., Booltink, H.W.G., Bouma, J., 2002. Saturated and field-saturated water flow parameters. In: Dane, J., Topp, C. (Eds.): Methods of Soil Analysis. Part 4: Physical Methods. Soil Science Society of America, Inc., Madison, USA, pp. 797–878.
- Romano, N., Palladino, M., 2002. Prediction of soil water retention using soil physical data and terrain attributes. J. Hydrol., 265, 1–4, 56–75.10.1016/S0022-1694(02)00094-X
- Sagova-Mareckova, M., Zadorova, T., Penizek, V., Omelka, M., Tejnecky, V., Pruchova, P., Chuman, T., Drabek, O., Buresova, A., Vanek, A., Kopecky, J., 2016. The structure of bacterial communities along two vertical profiles of a deep colluvial soil. Soil Biol. Biochem., 101, 65–73.10.1016/j.soilbio.2016.06.026
- Sándor, R., Iovino, M., Lichner, L., Alagna, V., Forster, D., Fraser, M., Kollár, J., Šurda, P., Nagy, V., Szabó, A., Fodor, N., 2021. Impact of climate, soil properties and grassland cover on soil water repellency. Geoderma, 383, 114780.10.1016/j.geoderma.2020.114780
- Sarapatka, B., Cap, L., Bila, P., 2018. The varying effect of water erosion on chemical and biochemical soil properties in different parts of Chernozem slopes. Geoderma, 314, 20–26.10.1016/j.geoderma.2017.10.037
- Sepehrnia, N., Woche, S.K., Goebel, M.-O., Bachmann, J., 2020. Development of a universal microinfiltrometer to estimate extent and persistence of soil water repellency as a function of capillary pressure and interface chemical composition. J. Hydrol. Hydromech., 68, 4, 392–403.10.2478/johh-2020-0035
- Schwen, A., Bodner, G., Loiskandl, W., 2011a. Time-variable soil hydraulic properties in near–surface soil water simulations for different tillage methods. Agric. Water Manag., 99, 42–50.10.1016/j.agwat.2011.07.020
- Schwen, A., Bodner, G., Scholl, P., Buchan, G., Loiskandl, W., 2011b. Temporal dynamic of soil hydraulic properties and the water–conducting porosity under different tillage. Soil Till. Res., 113, 89–98.10.1016/j.still.2011.02.005
- Sobieraj, J.A., Elsenbeer, H., Coelho, R.M., Newton, B., 2002. Spatial variability of soil hydraulic conductivity along a tropical rainforest catena. Geoderma, 108, 1–2, 79–90.10.1016/S0016-7061(02)00122-2
- Soilmoisture Equipment Corp. 2012. Model 2800K1 Guelph Permeameter Operating Instructions. Soilmoisture Equipment Corp., Santa Barbara, CA. https://www.soilmoisture.com/pdfs/Resource_Instructions_0898-2800_2800K1%20Guelph%20Permeameter%20.pdf
- StatSoft Inc., 2013. STATISTICA (data analysis software system) version 12. www.statsoft.com
- Stoops, G., 2003. Guidelines for Analysis and Desription of Soils and Regolith Thin Sections. Soil Science Society of America, Inc. Madison, Wisconsin, USA, 184 p.
- van Dam, J.C., Stricker, J.M.N., Droogers, P., 1994. Inverse method to determine soil hydraulic function from multi-step outflow experiment. Soil Sci. Soc. Am. J., 58, 3, 647–652.10.2136/sssaj1994.03615995005800030002x
- van Genuchten, M.Th., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 5, 892–898.10.2136/sssaj1980.03615995004400050002x
- Vašát, R., Kodešová, R., Borůvka, L., Klement, A., Jakšík, O., Gholizadeh, A., 2014. Consideration of peak parameters derived from continuum-removed spectra to predict extractable nutrients in soils with visible and near-infrared diffuse reflectance spectroscopy (VNIR-DRS). Geoderma, 232–234, 208–218.10.1016/j.geoderma.2014.05.012
- Vašát, R., Kodešová, R., Borůvka, L., Jakšík, O., Klement, A., Drábek, O., 2015a. Absorption features in soil spectra assessment. Appl. Spectrosc., 69, 12, 1425–1431.10.1366/14-0780026555184
- Vašát, R., Kodešová, R., Klement, A., Jakšík, O., 2015b. Predicting oxidizable carbon content via visible- and near-infrared diffuse reflectance spectroscopy in soils heavily affected by water erosion. Soil Water Res., 10, 2, 74–77.10.17221/18/2015-SWR
- Vašát, R., Kodešová, R., Borůvka, L., 2017a. Ensemble predictive model for more accurate soil organic carbon spectroscopic estimation. Comput. Geosci., 104, 75–83.10.1016/j.cageo.2017.04.008
- Vašát, R., Kodešová, R., Borůvka, L., Jakšík, O., Klement, A., Brodský, L., 2017b. Combining reflectance spectroscopy and the digital elevation model for soil oxidizable carbon estimation. Geoderma, 303, 133–142.10.1016/j.geoderma.2017.05.018
- Vašát, R., Kodešová, R., Klement, A., Borůvka, L., 2017c. Simple but efficient signal pre-processing in soil organic carbon spectroscopic estimation. Geoderma, 298, 46–53.10.1016/j.geoderma.2017.03.012
- Villarreal, R., Lozano, L.A., Salazar, M.P., Bellora, G.L., Melani, E.M., Polich, N., Soracco, C.G., 2020. Pore system configuration and hydraulic properties. Temporal variation during the crop cycle in different soil types of Argentinean Pampas Region. Soil Till. Res., 198, 104528.10.1016/j.still.2019.104528
- Watson, K.W., Luxmoore, R.J., 1986. Estimating macroporosity in a forest watershed by use of a tension infiltrometer. Soil Sci. Soc. Am. J., 50, 578–582.10.2136/sssaj1986.03615995005000030007x
- Wooding, R.A., 1968. Steady infiltration from a shallow circular pond. Water Resour. Res., 4, 1259–1273.10.1029/WR004i006p01259
- Zádorová, T., Penížek, V., Šefrna, L., Rohošková, M., Borůvka, L., 2011a. Spatial delineation of OC-rich Colluvial soils in Chernozem regions by terrain analysis and fuzzy classification. Catena, 85, 22–33.10.1016/j.catena.2010.11.006
- Zádorová, T., Jakšík, O., Kodešová, R., Penížek, V., 2011b. Influence of terrain attributes and soil properties on soil aggregate stability. Soil Water Res., 6, 111–119.10.17221/15/2011-SWR
- Zádorová, T., Penížek, V., Šefrna, L., Drábek, O., Mihaljevič, M., Volf, Š., Chuman, T., 2013. Identification of Neolithic to modern erosion-sedimentation phases using geochemical approach in a loess covered sub-catchment of South Moravia, Czech Republic. Geoderma, 195–196, 56–69.10.1016/j.geoderma.2012.11.012
- Zádorová, T., Žížala, D., Peňížek, V., Čejková, Š., 2014. Relating extent of colluvial soils to topographic derivatives and soil variables in a Luvisol sub-catchment, central Bohemia, Czech Republic. Soil Water Res., 2, 47–57.10.17221/57/2013-SWR
- Zádorová, T., Penížek, V., Vašát, R., Žížala, D., Chuman, T., Vaněk, A., 2015. Colluvial soils as a soil organic carbon pool in different soil regions. Geoderma, 253–254, 122–134.10.1016/j.geoderma.2015.04.012
- Zádorová, T., Penížek, V., 2018. Formation, morphology and classification of colluvial soils: a review. Eur. J. Soil Sci., 69, 577–591.10.1111/ejss.12673
- Zhang, R., 1997. Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Sci. Soc. Am. J., 61, 1024–1030.10.2136/sssaj1997.03615995006100040005x
- Zhang, Z.F., Groenevelt, P.H., Parkin, G.W., 1998. The well-shape factor for the measurement of soil hydraulic properties using the Guelph permeameter. Soil Till. Res., 49, 219–221.10.1016/S0167-1987(98)00174-3