Have a personal or library account? Click to login
Variability of topsoil hydraulic conductivity along the hillslope transects delineated in four areas strongly affected by soil erosion Cover

Variability of topsoil hydraulic conductivity along the hillslope transects delineated in four areas strongly affected by soil erosion

Open Access
|May 2021

References

  1. Alletto, L., Coquet, Y., 2009. Temporal and spatial variability of soil bulk density and near-saturated hydraulic conductivity under two contrasted tillage management system. Geoderma, 152, 85–94.10.1016/j.geoderma.2009.05.023
  2. Cantón, Y., Solé–Benet, A., Asensio, C., Chamizo, S., Puigdefábregas, J., 2009. Aggregate stability in range sandy loam soils relationships with runoff and erosion. Catena, 77, 192–199.10.1016/j.catena.2008.12.011
  3. Centeno, L.N., Timm, L.C., Reichardt, K., Beskow, S., Caldeira, T.L., de Oliveira, L.M., Wendroth, O., 2020. Identifying regionalized co-variate driving factors to assess spatial distributions of saturated soil hydraulic conductivity using multivariate and state-space analyses. Catena, 191, 104583.10.1016/j.catena.2020.104583
  4. Chandrasekhar, P., Kreiselmeier, J., Schwen, A., Weninger, T., Julich, S., Feger, K.-H., Schwärzel, K., 2018. Why we should include soil structural dynamics of agricultural soils in hydrological models. Water, 10, 1862.10.3390/w10121862
  5. Dexter, A.R., 2004a. Soil physical quality Part I. Theory effect of soil texture density and organic matter and effect on root growth. Geoderma, 120, 201–214.10.1016/j.geoderma.2003.09.004
  6. Dexter, A.R., 2004b. Soil physical quality Part II. Friability tillage tilth and hard–setting. Geoderma, 120, 215–226.10.1016/j.geoderma.2003.09.005
  7. Dexter, A.R., 2004c. Soil physical quality Part III. Unsaturated hydraulic conductivity and general conclusions about S– theory. Geoderma, 120, 227–239.10.1016/j.geoderma.2003.09.006
  8. Dexter, A.R., Czyz, E.A., 2007. Application of S–theory in study of soil physical degradation and its consequences. Land Degrad. Dev., 18, 369–381.10.1002/ldr.779
  9. Elrick, D.E., Reynolds W.D., Tan, K.A., 1989. Hydraulic conductivity measurements in the unsaturated zone using improved well analyses. Ground Water Monit. Rev., 9, 184–193.10.1111/j.1745-6592.1989.tb01162.x
  10. Fér, M., Kodešová, R., Nikodem, A., Jirků, V., Jakšík, O., Němeček, K., 2016. The impact of the permanent grass cover or conventional tillage on hydraulic properties of Haplic Cambisol developed on paragneiss substrate. Biologia, 71, 10, 1144–1150.10.1515/biolog-2016-0133
  11. Fér, M., Kodešová, R., Nikodem, A., Jelenová, K., Klement, A., 2018. Influence of soil–water content on CO2 efflux within the elevation transect heavily impacted by erosion. Ecohydrology, 11, 6, e1989.10.1002/eco.1989
  12. Fér, M., Kodešová, R., Hroníková, S., Nikodem, A., 2020. The effect of 12-year ecological farming on the soil hydraulic properties and repellency index. Biologia, 75, 795–798.10.2478/s11756-019-00373-1
  13. Florinsky, I.V., Eilers, R.G., Manning, G.R., Fuller, L.G., 2002. Prediction of soil properties by digital terrain modelling. Environ. Model. Softw., 17, 3, 95–311.10.1016/S1364-8152(01)00067-6
  14. Gardner, W.R., 1958. Some steady state solutions of unsaturated moisture flow equations with application to evaporation from a water table. Soil Sci., 85, 228–232.10.1097/00010694-195804000-00006
  15. Gribb, M.M., Kodešová, R., Ordway, S.E., 2004. Comparison of soil hydraulic property measurement methods. J. Geotech. Geoenviron. Eng., 130, 1084–1095.10.1061/(ASCE)1090-0241(2004)130:10(1084)
  16. Grundwald, S. Ed., 2005. Environmental Soil–Landscape Modeling. CRC Press.
  17. Herbst, M., Diekkrüger, B., Vereecken, H., 2006. Geostatistical co–regionalization of soil hydraulic properties in a micro– scale catchment using terrain attributes. Geoderma, 132, 1–2, 206–221.10.1016/j.geoderma.2005.05.008
  18. IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.
  19. Jakšík, O., Kodešová, R., Kubiš, A., Stehlíková, I., Drábek, O., Kapička, A., 2015. Soil aggregate stability within morphologically diverse areas. Catena, 127, 287–299.10.1016/j.catena.2015.01.010
  20. Jakšík, O., Kodešová, R., Kapička, A., Klement, A., Fér, M., Nikodem, A., 2016. Using magnetic susceptibility mapping for assessing soil degradation due to water erosion. Soil Water Res., 11, 2, 105–113.10.17221/233/2015-SWR
  21. Jirků, V., Kodešová, R., Nikodem, A., Mühlhanselová, M., Žigová, A., 2013. Temporal variability of structure and hydraulic properties of topsoil of three soil types. Geoderma, 204–205, 43–58.10.1016/j.geoderma.2013.03.024
  22. Kodešová, R., Rohošková, M., Žigová, A., 2009. Comparison of aggregate stability within six soil profiles under conventional tillage using various laboratory tests. Biologia, 64, 3, 550–554.10.2478/s11756-009-0095-6
  23. Kodešová, R., Šimůnek, J., Nikodem, A., Jirků, V., 2010. Estimation of parameters of the radially-symmetric dual-permeability model using tension disc infiltrometer and Guelph permeameter experiments. Vadose Zone J., 9, 213–225.10.2136/vzj2009.0069
  24. Kodešová, R., Jirků, V., Kodeš, V., Mühlhanselová, M., Nikodem, A., Žigová, A., 2011. Soil structure and soil hydraulic properties of Haplic Luvisol used as arable land and grassland. Soil Till. Res., 111, 2, 154–161.10.1016/j.still.2010.09.007
  25. Lark, R.M., Beckett, P.H.T., 1998. A geostatistical descriptor of the spatial distribution of soil classes, and its use in predicting the purity of possible soil map units. Geoderma, 83, 3–4, 243–267.10.1016/S0016-7061(97)00144-4
  26. Lichner, L., Iovino, M., Šurda, P., Nagy, V., Zvala, A., Kollár, J., Pecho, J., Píš, V., Sepehrnia, N., Sándor, R., 2020. Impact of secondary succession in abandoned fields on some properties of acidic sandy soils. J. Hydrol. Hydromech., 68, 1, 12–18.10.2478/johh-2019-0028
  27. Mayer, S., Kühnel, A., Burmeister, J., Kögel-Knabner, I., Wiesmeier, M., 2019. Controlling factors of organic carbon stocks in agricultural topsoils and subsoils of Bavaria. Soil Till. Res., 192, 22–32.10.1016/j.still.2019.04.021
  28. Meter Group AG., 2020. Mini Disk Infiltrometer. Mettlacher Straße 8, München. http://publications.metergroup.com/Manuals/20421_Mini_Disk_Manual_Web.pdf
  29. Miller, B.A., Schaetzl, R.J., 2015. Digital classification of hillslope position. Soil Sci. Soc. Am. J., 79, 132–145.10.2136/sssaj2014.07.0287
  30. Moore, I.D., Gessler, P.E., Nielsen, G.A., Peterson, G.A., 1993. Soil attribute prediction using terrain analysis. Soil Sci. Soc. Am. J., 57, 443–452.10.2136/sssaj1993.03615995005700020026x
  31. Mualem, Y., 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res., 12, 3, 513–522.10.1029/WR012i003p00513
  32. Nikodem, A., Kodešová. R., Fér, M., Klement, A., 2021. Using scaling factors for characterizing spatial and temporal variability of soil hydraulic properties of topsoils in areas heavily affected by soil erosion. J. Hydrol., 593, 125897.10.1016/j.jhydrol.2020.125897
  33. Nimmo J.R., Perkins K.S., 2002. Aggregate stability and size distribution. In: Dane, J.H., Topp, G.C. (Eds.): Methods of Soil Analysis, Part 4 – Physical Methods. SSSA, Madison, pp. 317–328.10.2136/sssabookser5.4.c14
  34. Papanicolaou, A.N., Elhakeem, M., Wilson, C.G., Burras, C.L., West, L.T., Lin, H., Clark, B., Oneal, B.E., 2015. Spatial variability of saturated hydraulic conductivity at the hillslope scale: Understanding the role of land management and erosional effect. Geoderma, 243–244, 58–68.10.1016/j.geoderma.2014.12.010
  35. Pavlů, L., Kodešová, R., Fér, M., Nikodem, A., Němec, F., Prokeš, R, 2021. The impact of various mulch types on soil properties controlling water regime of the Haplic Fluvisol. Soil Till. Res., 205, 104748.10.1016/j.still.2020.104748
  36. Penížek, V., Zádorová, T., Kodešová, R., Vaněk, A., 2016. Influence of elevation data resolution on spatial prediction of colluvial soils in a luvisol region. PloS ONE, 11, 11, 165699.10.1371/journal.pone.0165699
  37. Pennock, D.J., 2003. Terrain attributes, landform segmentation, and soil redistribution. Soil Till. Res., 69, 15–26.10.1016/S0167-1987(02)00125-3
  38. Reynolds, W.D., Elrick, D.E., 1991. Determination of hydraulic conductivity using a pension infiltrometer. Soil Sci. Soc. Am. J., 55, 633–639.10.2136/sssaj1991.03615995005500030001x
  39. Reynolds, W.D., Elrick D.E., Youngs, E.G., Amoozegar, A., Booltink, H.W.G., Bouma, J., 2002. Saturated and field-saturated water flow parameters. In: Dane, J., Topp, C. (Eds.): Methods of Soil Analysis. Part 4: Physical Methods. Soil Science Society of America, Inc., Madison, USA, pp. 797–878.
  40. Romano, N., Palladino, M., 2002. Prediction of soil water retention using soil physical data and terrain attributes. J. Hydrol., 265, 1–4, 56–75.10.1016/S0022-1694(02)00094-X
  41. Sagova-Mareckova, M., Zadorova, T., Penizek, V., Omelka, M., Tejnecky, V., Pruchova, P., Chuman, T., Drabek, O., Buresova, A., Vanek, A., Kopecky, J., 2016. The structure of bacterial communities along two vertical profiles of a deep colluvial soil. Soil Biol. Biochem., 101, 65–73.10.1016/j.soilbio.2016.06.026
  42. Sándor, R., Iovino, M., Lichner, L., Alagna, V., Forster, D., Fraser, M., Kollár, J., Šurda, P., Nagy, V., Szabó, A., Fodor, N., 2021. Impact of climate, soil properties and grassland cover on soil water repellency. Geoderma, 383, 114780.10.1016/j.geoderma.2020.114780
  43. Sarapatka, B., Cap, L., Bila, P., 2018. The varying effect of water erosion on chemical and biochemical soil properties in different parts of Chernozem slopes. Geoderma, 314, 20–26.10.1016/j.geoderma.2017.10.037
  44. Sepehrnia, N., Woche, S.K., Goebel, M.-O., Bachmann, J., 2020. Development of a universal microinfiltrometer to estimate extent and persistence of soil water repellency as a function of capillary pressure and interface chemical composition. J. Hydrol. Hydromech., 68, 4, 392–403.10.2478/johh-2020-0035
  45. Schwen, A., Bodner, G., Loiskandl, W., 2011a. Time-variable soil hydraulic properties in near–surface soil water simulations for different tillage methods. Agric. Water Manag., 99, 42–50.10.1016/j.agwat.2011.07.020
  46. Schwen, A., Bodner, G., Scholl, P., Buchan, G., Loiskandl, W., 2011b. Temporal dynamic of soil hydraulic properties and the water–conducting porosity under different tillage. Soil Till. Res., 113, 89–98.10.1016/j.still.2011.02.005
  47. Sobieraj, J.A., Elsenbeer, H., Coelho, R.M., Newton, B., 2002. Spatial variability of soil hydraulic conductivity along a tropical rainforest catena. Geoderma, 108, 1–2, 79–90.10.1016/S0016-7061(02)00122-2
  48. Soilmoisture Equipment Corp. 2012. Model 2800K1 Guelph Permeameter Operating Instructions. Soilmoisture Equipment Corp., Santa Barbara, CA. https://www.soilmoisture.com/pdfs/Resource_Instructions_0898-2800_2800K1%20Guelph%20Permeameter%20.pdf
  49. StatSoft Inc., 2013. STATISTICA (data analysis software system) version 12. www.statsoft.com
  50. Stoops, G., 2003. Guidelines for Analysis and Desription of Soils and Regolith Thin Sections. Soil Science Society of America, Inc. Madison, Wisconsin, USA, 184 p.
  51. van Dam, J.C., Stricker, J.M.N., Droogers, P., 1994. Inverse method to determine soil hydraulic function from multi-step outflow experiment. Soil Sci. Soc. Am. J., 58, 3, 647–652.10.2136/sssaj1994.03615995005800030002x
  52. van Genuchten, M.Th., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 5, 892–898.10.2136/sssaj1980.03615995004400050002x
  53. Vašát, R., Kodešová, R., Borůvka, L., Klement, A., Jakšík, O., Gholizadeh, A., 2014. Consideration of peak parameters derived from continuum-removed spectra to predict extractable nutrients in soils with visible and near-infrared diffuse reflectance spectroscopy (VNIR-DRS). Geoderma, 232–234, 208–218.10.1016/j.geoderma.2014.05.012
  54. Vašát, R., Kodešová, R., Borůvka, L., Jakšík, O., Klement, A., Drábek, O., 2015a. Absorption features in soil spectra assessment. Appl. Spectrosc., 69, 12, 1425–1431.10.1366/14-0780026555184
  55. Vašát, R., Kodešová, R., Klement, A., Jakšík, O., 2015b. Predicting oxidizable carbon content via visible- and near-infrared diffuse reflectance spectroscopy in soils heavily affected by water erosion. Soil Water Res., 10, 2, 74–77.10.17221/18/2015-SWR
  56. Vašát, R., Kodešová, R., Borůvka, L., 2017a. Ensemble predictive model for more accurate soil organic carbon spectroscopic estimation. Comput. Geosci., 104, 75–83.10.1016/j.cageo.2017.04.008
  57. Vašát, R., Kodešová, R., Borůvka, L., Jakšík, O., Klement, A., Brodský, L., 2017b. Combining reflectance spectroscopy and the digital elevation model for soil oxidizable carbon estimation. Geoderma, 303, 133–142.10.1016/j.geoderma.2017.05.018
  58. Vašát, R., Kodešová, R., Klement, A., Borůvka, L., 2017c. Simple but efficient signal pre-processing in soil organic carbon spectroscopic estimation. Geoderma, 298, 46–53.10.1016/j.geoderma.2017.03.012
  59. Villarreal, R., Lozano, L.A., Salazar, M.P., Bellora, G.L., Melani, E.M., Polich, N., Soracco, C.G., 2020. Pore system configuration and hydraulic properties. Temporal variation during the crop cycle in different soil types of Argentinean Pampas Region. Soil Till. Res., 198, 104528.10.1016/j.still.2019.104528
  60. Watson, K.W., Luxmoore, R.J., 1986. Estimating macroporosity in a forest watershed by use of a tension infiltrometer. Soil Sci. Soc. Am. J., 50, 578–582.10.2136/sssaj1986.03615995005000030007x
  61. Wooding, R.A., 1968. Steady infiltration from a shallow circular pond. Water Resour. Res., 4, 1259–1273.10.1029/WR004i006p01259
  62. Zádorová, T., Penížek, V., Šefrna, L., Rohošková, M., Borůvka, L., 2011a. Spatial delineation of OC-rich Colluvial soils in Chernozem regions by terrain analysis and fuzzy classification. Catena, 85, 22–33.10.1016/j.catena.2010.11.006
  63. Zádorová, T., Jakšík, O., Kodešová, R., Penížek, V., 2011b. Influence of terrain attributes and soil properties on soil aggregate stability. Soil Water Res., 6, 111–119.10.17221/15/2011-SWR
  64. Zádorová, T., Penížek, V., Šefrna, L., Drábek, O., Mihaljevič, M., Volf, Š., Chuman, T., 2013. Identification of Neolithic to modern erosion-sedimentation phases using geochemical approach in a loess covered sub-catchment of South Moravia, Czech Republic. Geoderma, 195–196, 56–69.10.1016/j.geoderma.2012.11.012
  65. Zádorová, T., Žížala, D., Peňížek, V., Čejková, Š., 2014. Relating extent of colluvial soils to topographic derivatives and soil variables in a Luvisol sub-catchment, central Bohemia, Czech Republic. Soil Water Res., 2, 47–57.10.17221/57/2013-SWR
  66. Zádorová, T., Penížek, V., Vašát, R., Žížala, D., Chuman, T., Vaněk, A., 2015. Colluvial soils as a soil organic carbon pool in different soil regions. Geoderma, 253–254, 122–134.10.1016/j.geoderma.2015.04.012
  67. Zádorová, T., Penížek, V., 2018. Formation, morphology and classification of colluvial soils: a review. Eur. J. Soil Sci., 69, 577–591.10.1111/ejss.12673
  68. Zhang, R., 1997. Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Sci. Soc. Am. J., 61, 1024–1030.10.2136/sssaj1997.03615995006100040005x
  69. Zhang, Z.F., Groenevelt, P.H., Parkin, G.W., 1998. The well-shape factor for the measurement of soil hydraulic properties using the Guelph permeameter. Soil Till. Res., 49, 219–221.10.1016/S0167-1987(98)00174-3
DOI: https://doi.org/10.2478/johh-2021-0008 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 220 - 231
Submitted on: Feb 4, 2021
Accepted on: Mar 29, 2021
Published on: May 21, 2021
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Antonín Nikodem, Radka Kodešová, Miroslav Fér, Aleš Klement, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.