Have a personal or library account? Click to login
Two-dimensional (2D) numerical modelling of rainfall induced overland flow, infiltration and soil erosion: comparison with laboratory rainfall-runoff simulations on a two-directional slope soil flume Cover

Two-dimensional (2D) numerical modelling of rainfall induced overland flow, infiltration and soil erosion: comparison with laboratory rainfall-runoff simulations on a two-directional slope soil flume

Open Access
|May 2021

References

  1. Abrantes, J.R.C.B., de Lima, J.L.M.P., Montenegro, A.A.A., 2015. Performance of kinematic modelling of surface runoff for intermittent rainfall on soils covered with mulch (in Portuguese). Rev. Bras. Eng. Agr. Amb., 19, 2, 166–172. https://doi.org/10.1590/1807-1929/agriambi.v19n2p166-17210.1590/1807-1929/agriambi.v19n2p166-172
  2. Abrantes, J.R.C.B., Prats, S.A., Jacob, J.K., de Lima, J.L.M.P., 2018. Effectiveness of the application of rice straw mulching strips in reducing runoff and soil loss: Laboratory soil flume experiments under simulated rainfall. Soil Tillage Res., 180, 238–249. https://doi.org/10.1016/j.still.2018.03.01510.1016/j.still.2018.03.015
  3. Abrantes, J.R.C.B., Moruzzi, R.B., de Lima, J.L.M.P., Silveira, A., Montenegro, A.A.A., 2019. Combining a thermal tracer with a transport model to estimate shallow flow velocities. Phys. Chem. Earth, 109, 59–69. https://doi.org/10.1016/j.pce.2018.12.00510.1016/j.pce.2018.12.005
  4. Batista, P.V.G., Davies, J., Silva, M.L.N., Quinton, J.N., 2019. On the evaluation of soil erosion models: Are we doing enough? Earth Sci. Rev., 197, 102898. https://doi.org/10.1016/j.earscirev.2019.10289810.1016/j.earscirev.2019.102898
  5. Beven, K.J., 2012. Rainfall-Runoff Modelling: The Primer. 2nd ed. Wiley-Blackwell, Chichester, UK.10.1002/9781119951001
  6. Boardman, J., Shepheard, M.L., Walker, E., Foster, I.D.L., 2009. Soil erosion and risk-assessment for on- and off-farm impacts: A test case using the Midhurst area, West Sussex, UK. J. Environ. Manage., 90, 8, 2578–2588. https://doi.org/10.1016/j.jenvman.2009.01.01810.1016/j.jenvman.2009.01.018
  7. Cao, Z., Pender, G., Wallis, S., Carling, P., 2002. Computational dam-break hydraulics over erodible sediment bed. J. Hydraul. Eng., 128, 5, 460–72. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:7(689)10.1061/(ASCE)0733-9429(2004)130:7(689)
  8. Cheng, N.S., 1997. Simplified settling velocity formula for sediment particle. J. Hydraul. Eng., 123, 2, 149–152. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:2(149)10.1061/(ASCE)0733-9429(1997)123:2(149)
  9. Christiansen, J.E., 1942. Irrigation by Sprinkling. California Agricultural Experiment Station Bulletin 670. University of California, Berkeley, CA, USA.
  10. Cuomo, S., Della Sala, M., Pierri, M., 2016. Experimental evidences and numerical modelling of runoff and soil erosion in flume tests. Catena, 147, 61–70. https://doi.org/10.1016/j.catena.2016.06.04410.1016/j.catena.2016.06.044
  11. de Lima, J.L.M.P., Carvalho, S.C.P., de Lima, M.I.P., 2013. Rainfall simulator experiments on the importance of when rainfall burst occurs during storm events on runoff and soil loss. Z. Geomorphol., 57, 1, 91–109. https://doi.org/10.1127/0372-8854/2012/S-0009610.1127/0372-8854/2012/S-00096
  12. de Lima, J.L.M.P., Santos, L., Mujtaba, B., de Lima, M.I.P., 2019. Laboratory assessment of the influence of rice straw mulch size on soil loss. Adv. Geosci., 48, 11–18. https://doi.org/10.5194/adgeo-48-11-201910.5194/adgeo-48-11-2019
  13. Deng, Z.Q., de Lima J.L.M.P., Singh, V.P., 2005. Transport rate-based model for overland flow and solute transport: Parameter estimation and process simulation. J. Hydrol., 315, 1–4, 220–235. https://doi.org/10.1016/j.jhydrol.2005.03.04210.1016/j.jhydrol.2005.03.042
  14. Deng, Z.Q., de Lima, J.L.M.P., Jung, H.S., 2008. Sediment transport rate-based model for rainfall-induced soil erosion. Catena, 76, 1, 54–62. https://doi.org/10.1016/j.catena.2008.09.00510.1016/j.catena.2008.09.005
  15. Esteves, M., Faucher, X., Galle, S., Vauclin, M., 2000. Overland flow and infiltration modelling for small plots during unsteady rain: numerical results versus observed values. J. Hydrol., 228, 3–4, 265–282. https://doi.org/10.1016/S0022-1694(00)00155-410.1016/S0022-1694(00)00155-4
  16. Flanagan, D.C., Nearing, M.A., 1995. USDA-Water Erosion Prediction Project: Hillslope Profile and Watershed Model Documentation. NSERL Report No. 10. USDA-ARS, National Soil Erosion Research, West Lafayette, IN, USA.
  17. Gabellani, S., Silvestro, F., Rudari, R., Boni, G., 2008. General calibration methodology for a combined Horton-SCS infiltration scheme in flash flood modeling. Nat. Hazards Earth Sys. Sci., 8, 6, 1317–1327. https://doi.org/10.5194/nhess-8-1317-200810.5194/nhess-8-1317-2008
  18. Garcia, R., Kahawita, R.A., 1986. Numerical solution of the St. Venant equations with the MacCormack finite-difference scheme. Int. J. Numer. Meth. Fluids, 6, 5, 259–274. https://doi.org/10.1002/fld.165006050210.1002/fld.1650060502
  19. Horton, R., 1933. The role of infiltration in the hydrological cycle. Trans. Am. Geophys. Union, 14, 1, 446–460. https://doi.org/10.1029/TR014i001p0044610.1029/TR014i001p00446
  20. Isidoro J.M.G.P., de Lima J.L.M.P., 2013. An analytical closed form solution for 1D kinematic overland flow under moving rainstorms. J. Hydrol. Eng., 18, 9, 1148–1156. https://doi.org/10.1061/(ASCE)HE.1943-5584.000074010.1061/(ASCE)HE.1943-5584.0000740
  21. Kinnell, P.I.A., 2005. Raindrop-impact-induced erosion processes and prediction: a review. Hydrol. Proc., 19, 14, 2815–2844. https://doi.org/10.1002/hyp.578810.1002/hyp.5788
  22. Liu, X., Beljadid, A., 2017. A coupled numerical model for water flow, sediment transport and bed erosion. Comput. Fluids, 154, 273–284. https://doi.org/10.1016/j.compfluid.2017.06.01310.1016/j.compfluid.2017.06.013
  23. MacCormack, R.W., 1971. Numerical solution of the interaction of a shock wave with a laminar boundary layer. In: Holt M. (Eds.): Proceedings of the Second International Conference on Numerical Methods in Fluid Dynamics. Lecture Notes in Physics, 8. Springer, Heidelberg, Germany.
  24. Martins, R., Leandro, J., Djordjević, S., 2018. Wetting and drying numerical treatments for the Roe Riemann scheme. J. Hydraul. Res., 56, 2, 256–267. https://doi.org/10.1080/00221686.2017.128925610.1080/00221686.2017.1289256
  25. Montenegro, A.A.A., Abrantes, J.R.C.B., de Lima, J.L.M.P., Singh, V.P., Santos, T.E.M., 2013. Impact of mulching on soil and water dynamics under intermittent simulated rainfall. Catena, 109, 139–149. https://doi.org/10.1016/j.catena.2013.03.01810.1016/j.catena.2013.03.018
  26. Montgomery, D.R., 2007. Dirt: The Erosion of Civilizations. University of California Press, Berkeley, CA, USA.10.1525/9780520933163
  27. Morgan, R.P.C., Quinton, J.N., Smith, R.E., Govers, G., Poesen, J.W.A., Auerswald, K., Chisci, G., Torri, D., Styczen, M.E., 1998. The European Soil Erosion Model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments. Earth Surf. Process. Landf., 23, 527–544. https://doi.org/10.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-510.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-5
  28. Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I - a discussion of principles, J. Hydrol., 10, 3, 282–290. https://doi.org/10.1016/0022-1694(70)90255-610.1016/0022-1694(70)90255-6
  29. Nearing, M.A., 2000. Evaluating soil erosion models using measured plot data: accounting for variability in the data. Earth Surf. Process. Landf., 25, 1035–1043. https://doi.org/10.1002/1096-9837(200008)25:9<1035::AIDESP121>3.0.CO;2-B
  30. Panagos, P., Katsoyiannis, A., 2019. Soil erosion modelling: The new challenges as the result of policy developments in Europe. Environ. Res., 172, 470–474. https://doi.org/10.1016/j.envres.2019.02.04310.1016/j.envres.2019.02.043
  31. Prats, S.A., Abrantes, J.R.C.B., Crema, I.P., Keizer, J.J., de Lima, J.L.M.P., 2017. Runoff and soil erosion mitigation with sieved forest residue mulch strips under controlled laboratory conditions. Forest Ecol. Manag., 396, 102–112. https://doi.org/10.1016/j.foreco.2017.04.01910.1016/j.foreco.2017.04.019
  32. Renard, K., Foster, G.R., Weesies, G.A., McCool, D.K., Yoder, D.C., 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). Agricultural Handbook 703, USDAARS, Southwest Watershed Research Center, Tucson, AZ, USA.
  33. Rickson, R.J., 2014. Can control of soil erosion mitigate water pollution by sediments? Sci. Total Environ., 468–469, 1187–1197. https://doi.org/10.1016/j.scitotenv.2013.05.05710.1016/j.scitotenv.2013.05.057
  34. Silveira, A., Abrantes, J.R.C.B., de Lima, J.L.M.P., Lira, L.C., 2016. Modelling runoff on ceramic tile roofs using the kinematic wave equations. Water Sci. Technol., 73, 11, 2824–2831. https://doi.org/10.2166/wst.2016.14810.2166/wst.2016.148
  35. Simões, N.E., 2006. Modelação bidimensional de escoamentos variáveis em superfície livre: aplicação ao estudo de cheias. Master’s Thesis. Faculty of Sciences and Technology of the University of Coimbra, Coimbra, Portugal. (In Portuguese.)
  36. Singh, V.P., de Lima, J.L.M.P., 2018. One-dimensional linear kinematic wave solution for overland flow under moving storms using the method of characteristics. J. Hydrol. Eng., 23, 7, 04018029. https://doi.org/10.1061/(ASCE)HE.1943-5584.000167610.1061/(ASCE)HE.1943-5584.0001676
  37. Singh, V.P., Woolhiser, D.A., 2002. Mathematical modeling of watershed hydrology. J. Hydrol. Eng., 7, 4, 270–292. https://doi.org/10.1061/(ASCE)1084-0699(2002)7:4(270)10.1061/(ASCE)1084-0699(2002)7:4(270)
  38. Stroosnijder, L., 2005. Measurement of erosion: Is it possible? Catena, 64, 162–173. https://doi.org/10.1016/j.catena.2005.08.00410.1016/j.catena.2005.08.004
  39. USDA, 1993. Soil Survey Manual, USDA-SCS Handbook 18. U.S. Government Publishing Office, Washington, DC, USA.
  40. USDA, 2004. National Engineering Handbook, Section 4. U.S. Department of Agriculture, Washington, DC, USA.
  41. Vennard, J.K., Street, R.L., 1975. Elementary Fluid Mechanics, 5th ed. Wiley, New York, NY, USA.
  42. Wischmeier, W.H., Smith, D., 1978. Predicting Rainfall-Erosion Losses: A Guide to Conservation Planning. Agriculture Handbook No. 537, USDA, Washington, DC, USA.
  43. Woolhiser, D.A., Smith, R.E., Goodrich, D.C., 1990. KINEROS: A Kinematic Runoff and Erosion Model: Documentation and User Manual. USDA-ARS-77, West Lafayette, IN, USA.
  44. Wu, S., Chen, Li., Wang, N., Li, J., Li, J. 2020. Two-dimensional rainfall-runoff and soil erosion model on an irregularly rilled hillslope. J. Hydrol., 580, 124346. https://doi.org/10.1016/j.jhydrol.2019.12434610.1016/j.jhydrol.2019.124346
  45. Zhang, W., Cundy, T.W., 1989. Modeling of two dimensional overland flow. Water Resour. Res., 25, 9, 2019–2035. https://doi.org/10.1029/WR025i009p0201910.1029/WR025i009p02019
DOI: https://doi.org/10.2478/johh-2021-0003 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 140 - 150
Submitted on: Sep 30, 2019
Accepted on: Dec 21, 2020
Published on: May 21, 2021
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 João R.C.B. Abrantes, Nuno E. Simões, João L.M.P. de Lima, Abelardo A.A. Montenegro, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.