Have a personal or library account? Click to login
Effect of T-shaped spur dike length on mean flow characteristics along a 180-degree sharp bend Cover

Effect of T-shaped spur dike length on mean flow characteristics along a 180-degree sharp bend

Open Access
|Jan 2021

References

  1. Abhari, M.N., Ghodsian, M., Vaghefi, M., Panahpur, N., 2010. Experimental and numerical simulation of flow in a 90 bend. Flow. Meas. Instrum., 21, 292–298. https://doi.org/10.1016/j.flowmeasinst.2010.03.00210.1016/j.flowmeasinst.2010.03.002
  2. Aksoy, A.O., Bombar, G., Arkis, T., Guney, M.S., 2017. Study of the time-dependent clear water scour around circular bridge piers. J. Hydrol. Hydromech., 65, 26–34. https://doi.org/10.1515/johh-2016-004810.1515/johh-2016-0048
  3. Blanckaert, K., Graf, W.H., 2001. Mean flow and turbulence in open-channel bend. J. Hydraul. Eng., 127, 835–847. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:10(835)10.1061/(ASCE)0733-9429(2001)127:10(835)
  4. Chiew, Y.M., Melville, B.W., 1987. Local Scour around Bridge Piers. J. Hydraul. Res., 25, 15–26. https://doi.org/10.1080/0022168870949928510.1080/00221688709499285
  5. Evangelista, S., Giovinco, G., Kocaman, S., 2017. A multi-parameter calibration method for the numerical simulation of morphodynamic problems. J. Hydrol. Hydromech., 65, 175–182. https://doi.org/10.1515/johh-2017-001410.1515/johh-2017-0014
  6. Fazli, M., Ghodsian, M., Salehi Neyshabouri, S.A.A., 2008. Scour and flow field around a spur dike in a 90o bend. Int. J. Sediment. Res., 23, 56–68. https://doi.org/10.1016/S1001-6279(08)60005-010.1016/S1001-6279(08)60005-0
  7. Ghodsian, M., Vaghefi, M., 2009. Experimental study on scour and flow field in a scour hole around a T-shape spur dikes in a 90˚ bend. Int. J. Sediment. Res., 24, 145–158. https://doi.org/10.1016/S1001-6279(09)60022-610.1016/S1001-6279(09)60022-6
  8. Gill, M.A., 1972. Erosion and sand beds around spur dikes. J. Hydraul. Div., 98, 1587–1602.10.1061/JYCEAJ.0003406
  9. Jahadi, M., Afzalimehr, H., Rowinski, P.M., 2019. Flow structure within a vegetation patch in a gravel-bed river. J. Hydrol. Hydromech., 67, 154–162. https://doi.org/10.2478/johh-2019-000110.2478/johh-2019-0001
  10. Koken, M., Gogus, M., 2015. Effect of spur dike length on the horseshoe vortex system and the bed shear stress distribution. J. Hydraul. Res., 53, 196–206. https://doi.org/10.1080/00221686.2014.96781910.1080/00221686.2014.967819
  11. Lien, H.C., Hsieh, T.Y., Yang, J.C., Yeh, K.C., 1999. Bend-flow simulation using 2D depth-averaged model. J. Hydraul. Eng., 125, 1097–1108. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:10(1097)10.1061/(ASCE)0733-9429(1999)125:10(1097)
  12. Liu, X., Zhou, Q., Huang, S., Guo, Y., Liu, C., 2018. Estimation of flow direction in meandering compound channels. J. Hydrol., 556, 143–153. https://doi.org/10.1016/j.jhydrol.2017.10.07110.1016/j.jhydrol.2017.10.071
  13. Mehraein, M., Ghodsian, M., Najibi, S.A., 2014. Experimental investigation on the flow field around a spur dike in a 90 degree sharp bend. In: Proc. of River flow Conf., Lausanne, pp. 743–749.10.1201/b17133-101
  14. Namaee, M.R., Sui, J., 2019. Impact of armour layer on the depth of scour hole around side-by-side bridge piers under ice-covered flow condition. J. Hydrol. Hydromech., 67, 240–251. https://10.2478/johh-2019-001010.2478/johh-2019-0010
  15. Namaee, M.R., Sui, J., 2020. Velocity profiles and turbulence intensities around side-by-side bridge piers under ice-covered flow condition. J. Hydrol. Hydromech., 68, 70–82. https://10.2478/johh-2019-002910.2478/johh-2019-0029
  16. Neill, C.R., 1968. A re-examination of the beginning of movement for coarse granular bed materials. Hydraulics Research Station, Wallingford.
  17. Nortek, A.S., 2009. Vectrino velocimeter manual. Nortek AS, Bærum.
  18. Novak, P., Nalluri, C., 1984. Incipient motion of sediment particles over fixed beds. J. Hydraul. Res., 22, 181–197. https://doi.org/10.1080/0022168840949940510.1080/00221688409499405
  19. Parker, G., Toro-Escobar, C.M., Ramey, M., Beck, S., 2003. Effect of floodwater extraction on mountain stream morphology. J. Hydral. Eng., 129, 885–895. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:11(885)10.1061/(ASCE)0733-9429(2003)129:11(885)
  20. Perzedwojski, B., Blazejewski, R., Pilarczyk, K.W., 1995. River Training Techniques: Fundamental, Design and Application. A.A. Balkema, Rotterdam.
  21. Rozovskii, I.L., 1957. Flow of water in bends of open channels, Academy of Sciences of the Ukrainian SSR, Kiev.
  22. Safarzadeh, A., Salehi Neyshabouri, S.A.A., Zarrati, A.R., 2016. Experimental investigation on 3D turbulent flow around straight and T-shaped groynes in a flat bed channel. J. Hydraul. Eng., 142, 04016021. https://doi.org/10.1061/(ASCE)HY.1943-7900.000114410.1061/(ASCE)HY.1943-7900.0001144
  23. Schlichting, H., 1968. Boundary Layer Theory. McGraw-Hill, New York.
  24. Sharma, K., Mohapatra, P.K., 2012. Separation zone in flow past a spur dyke on rigid bed meandering channel. J. Hydraul. Eng., 138, 897–901. https://doi.org/10.1061/(ASCE)HY.1943-7900.000058610.1061/(ASCE)HY.1943-7900.0000586
  25. Shukry, A., 1950. Flow around bends in an open flume. T. Am. Soc. Civ. Eng., 115, 751–779.10.1061/TACEAT.0006426
  26. Smart, G.M., 1999. Turbulent velocity profiles and boundary shear in gravel bed rivers. J. Hydral. Eng., 125, 106–116. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:2(106)10.1061/(ASCE)0733-9429(1999)125:2(106)
  27. Vaghefi, M., 2009. Experimental investigation on flow field and scour pattern around T-shape spur dikes in a 90° bend. Ph.D. Thesis, Tarbiat Modares University, Tehran.
  28. Vaghefi, M., Akbari, M., 2019. Procedure for setting up 180 degree sharp bend flume including construction and examinations with hydraulic structures. Sci. Iran., 26, 270–278. https://doi.org/10.24200/sci.2018.5033.105410.24200/sci.2018.5033.1054
  29. Vaghefi, M., Ghodsian, M., Salehi Neyshabouri, S.A.A., 2012. Experimental study on scour around a T-shaped spur dike in a channel bend. J. Hydraul. Eng., 27, 498–509. https://doi.org/10.1061/(ASCE)HY.1943-7900.000053610.1061/(ASCE)HY.1943-7900.0000536
  30. Vaghefi, M., Safarpoor, Y., Hashemi, S.S., 2015. Effects of relative curvature on the scour pattern in a 90° bend with a T-shaped spur dike using a numerical method. Int. J. River. Basin. Manage., 13, 501–514. https://doi.org/10.1080/15715124.2015.104918110.1080/15715124.2015.1049181
  31. Vaghefi, M., Akbari, M., Fiouz, A.R., 2016a. An Experimental study of mean and turbulent flow in a 180 degree sharp open channel bend: secondary flow and bed shear stress. KSCE. J. Civ. Eng., 20, 1582–1593. https://doi.org/10.1007/s12205-015-1560-010.1007/s12205-015-1560-0
  32. Vaghefi, M., Safarpoor, Y., Akbari, M., 2016b. Numerical investigation of flow pattern and components of three-dimensional velocity around a submerged T-shaped spur dike in a 90 degree bend. J. Cent. South. Univ., 23, 2984–2998. https://doi.org/10.1007/s11771-016-3362-z10.1007/s11771-016-3362-z
  33. Vaghefi, M., Ghodsian, M., Akbari, M., 2017. Experimental investigation on 3D flow around a single T-shaped spur dike in a bend. Period. Polytech-Civ., 61, 462–470. https://doi.org/10.3311/PPci.799910.3311/PPci.7999
  34. Vaghefi, M., Faraji, B., Akbari, M., Eghbalzadeh, A., 2018a. Numerical investigation of flow pattern around a T-shaped spur dike in the vicinity of attractive and repelling protective structures. J. Braz. Soc. Mech. Sci., 40, 93. https://doi.org/10.1007/s40430-017-0954-y10.1007/s40430-017-0954-y
  35. Vaghefi, M., Mahmoodi, K., Akbari, M., 2018b. A comparison among data mining algorithms for outlier detection using flow pattern experiments. Sci. Iran., 25, 590–605. https://doi.org/10.24200/sci.2017.418210.24200/sci.2017.4182
  36. Vaghefi, M., Mahmoodi, K., Akbari, M., 2019a. Detection of outlier in 3D flow velocity collection in an open-channel bend using various data mining techniques. IJST-T Civ. Eng., 43, 197–214. https://doi.org/10.1007/s40996-018-0131-210.1007/s40996-018-0131-2
  37. Vaghefi, M., Radan, P., Akbari, M., 2019b. Flow pattern around attractive, vertical, and repelling t-shaped spur dikes in a mild bend using CFD modeling. Int. J. Civ. Eng., 17, 607–617. https://doi.org/10.1007/s40999-018-0340-x10.1007/s40999-018-0340-x
  38. Vaghefi, M., Mahmoodi, K., Setayeshi, S., Akbari, M., 2020. Application of artificial neural networks to predict flow velocity in a 180° sharp bend with and without a spur dike. Soft. Comput., 24, 8805–8821. https://doi.org/10.1007/s00500-019-04413-510.1007/s00500-019-04413-5
  39. Velísková, Y., Chára, Z., Schügerl, R., Dulovičová, R., 2018. CFD simulation of flow behind overflooded obstacle. J. Hydrol. Hydromech., 66, 448–456. https://doi.org/10.2478/johh-2018-002810.2478/johh-2018-0028
  40. Wu, Y.S., Chiew, Y.M., 2012. Three-dimensional scour at submarine pipelines. J. Hydraul. Eng., 138, 788–795. https://doi.org/10.1061/(ASCE)HY.1943-7900.000058310.1061/(ASCE)HY.1943-7900.0000583
  41. Yang, J., Zhang, J., Zhang, Q., Teng, X., Chen, W., Li, X., 2019. Experimental research on the maximum backwater height in front of a permeable spur dike in the bend of a spillway chute. Water. Supp., 19, 1841–1850. https://doi.org/10.2166/ws.2019.06110.2166/ws.2019.061
  42. Zhang, P., Yang, S., Hu, J., Li, W., Fu, X., Li, D., 2020. A new method for extracting spanwise vortex from 2D particle image velocimetry data in open-channel flow. J. Hydrol. Hydro-mech., 68, 242–248. https://doi.org/10.2478/johh-2020-002010.2478/johh-2020-0020
DOI: https://doi.org/10.2478/johh-2020-0045 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 98 - 107
Submitted on: May 14, 2020
Accepted on: Nov 11, 2020
Published on: Jan 26, 2021
Published by: Slovak Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Maryam Akbari, Mohammad Vaghefi, Yee-Meng Chiew, published by Slovak Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.