Bonal, D., Burban, B., Stahl, C., Wagner, F., Hérault, B., 2016. The response of tropical rainforests to drought - lessons from recent research and future prospects. Annals of Forest Science, 73, 27–44. DOI: 10.1007/s13595-015-0522-510.1007/s13595-015-0522-5481088827069374
Chai, T., Draxler, R.R., 2014. Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7, 1247–1250. DOI: 10.5194/gmd-7-1247-201410.5194/gmd-7-1247-2014
Chau, K.W., Wu, C.L., 2010. A hybrid model coupled with singular spectrum analysis for daily rainfall prediction. Journal of Hydroinformatics, 12, 458–473. DOI: 10.2166/hydro.2010.03210.2166/hydro.2010.032
Cuo, L., Pagano, T.C., Wang, Q.J., 2011. A review of quantitative precipitation forecasts and their use in short-to-medium streamflow forecasting. Journal of Hydrometeorology, 12, 713–728.10.1175/2011JHM1347.1
dos Santos, T.S., Mendes, D., Torres, R.R., 2016. Artificial neural networks and multiple linear regression model using principal components to estimate rainfall over South America. Nonlinear Processes in Geophysics, 23, 13–20. DOI: 10.5194/npg-23-13-201610.5194/npg-23-13-2016
Du, K., Zhao, Y., Lei, J., 2017. The incorrect usage of singular spectral analysis and discrete wavelet transform in hybrid models to predict hydrological time series. J. Hydrol., 552, 44–51. DOI: 10.1016/j.jhydrol.2017.06.01910.1016/j.jhydrol.2017.06.019
Espinoza, J.C., Segura, H., Ronchail, J., Drapeau, G., Gutierrez-Cori, O., 2016. Evolution of wet-day and dry-day frequency in the western Amazon basin: Relationship with atmospheric circulation and impacts on vegetation. Water Resources Research, 52, 8546–8560. https://doi.org/10.1002/2016WR01930510.1002/2016WR019305
Fahimi, F., Yaseen, Z.M., El-shafie, A., 2017. Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review. Theoretical and Applied Climatology, 128, 875–903. https://doi.org/10.1007/s00704-016-1735-810.1007/s00704-016-1735-8
Falck, A.S., Maggioni, V., Tomasella, J., Vila, D.A., Diniz, F.L., 2015. Propagation of satellite precipitation uncertainties through a distributed hydrologic model: A case study in the Tocantins–Araguaia basin in Brazil. Journal of Hydrology, 527, 943–957. http://dx.doi.org/10.1016/j.jhydrol.2015.05.04210.1016/j.jhydrol.2015.05.042
Frumau, K.A., Bruijnzeel, L.A., Tobón, C., 2011. Precipitation measurement and derivation of precipitation inclination in a windy mountainous area in northern Costa Rica. Hydrological Processes, 25, 499–509. https://doi.org/10.1002/hyp.786010.1002/hyp.7860
Gloor, M.R.J.W., Brienen, R.J., Galbraith, D., Feldpausch, T.R., Schöngart, J., Guyot, J.L., Phillips, O.L., 2013. Intensification of the Amazon hydrological cycle over the last two decades. Geophysical Research Letters, 40, 1729–1733. https://doi.org/10.1002/grl.5037710.1002/grl.50377
Gupta, A., Kamble, T., Machiwal, D., 2017. Comparison of ordinary and Bayesian kriging techniques in depicting rainfall variability in arid and semi-arid regions of north-west India. Environmental Earth Sciences, 76, 512. https://doi.org/10.1007/s12665-017-6814-310.1007/s12665-017-6814-3
He, X., Guan, H., Qin, J., 2015. A hybrid wavelet neural network model with mutual information and particle swarm optimization for forecasting monthly rainfall. Journal of Hydrology, 527, 88–100. http://dx.doi.org/10.1016/j.jhydrol.2015.04.0470022.
Hellassa, S., Souag-Gamane, D., 2019. Improving a stochastic multi-site generation model of daily rainfall using discrete wavelet de-noising: a case study to a semi-arid region. Arabian Journal of Geosciences, 12, 53. https://doi.org/10.1007/s12517-018-4168-010.1007/s12517-018-4168-0
Holdefer, A.E., Severo, D.L., 2015. Análise por ondaletas sobre níveis de rios submetidos à influência de maré. Revista Brasileira de Recursos Hídricos, 20, 192–201. DOI: 10.21168/rbrh.v20n1.p192-20110.21168/rbrh.v20n1.p192-201
IBGE – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Cobertura do uso da terra do Brasil (Land use coverage in Brazil). Rio de Janeiro: IBGE, 2014. Available from: https://www.ibge.gov.br/geocienciasnovoportal/informacoes-ambientais/cobertura-e-uso-da-terra (accessed in 13 Sept. 2017)
Kisi, O., Cimen, M., 2011. A wavelet-support vector machine conjunction model for monthly streamflow forecasting. Journal of Hydrology, 399, 132–140.10.1016/j.jhydrol.2010.12.041
Kuo, C.C., Gan, T.Y., Yu, P.-S., 2010. Wavelet analysis on the variability, teleconnectivity, and predictability of the seasonal rainfall of Taiwan. Monthly Weather Review, 138, 162–175.10.1175/2009MWR2718.1
Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I – A discussion of principles. Journal of Hydrology, 10, 282–290. http://doi.org/10.1016/0022-1694(70)90255-610.1016/0022-1694(70)90255-6
Nerantzaki, S.D., Papalexiou, S.M., 2019. Tails of extremes: Advancing a graphical method and harnessing big data to assess precipitation extremes. Advances in Water Resources, 134, Article Number: 103448.10.1016/j.advwatres.2019.103448
Partal, T., Cigizoglu, H.K., Kahya, E., 2015. Daily precipitation predictions using three different wavelet neural network algorithms by meteorological data. Stochastic Environmental Research and Risk Assessment, 29, 1317–1329. https://doi.org/10.1007/s00477-015-1061-110.1007/s00477-015-1061-1
Percival, D.B., Walden, A.T., 2000. Wavelet methods for time series analysis. Cambridge Series in Statistical and Probabilistic Mathematics. 1st ed. Cambridge University Press, Cambridge.
Ramírez-Hernández, J., Infante-Prieto, S.O., Villa-Angulo, R., Hallack-Alegría, M., 2016. La influencia del efecto de borde en el pronóstico de precipitaciones utilizando DWT diádica, MODWT, ANN y ANFIS. Tecnología y ciencias del agua, 73, 93–113.
Rivera, D., Lillo, M., Uvo, C.B., Billib, M., Arumí, J.L., 2012. Forecasting monthly precipitation in Central Chile: a self-organizing map approach using filtered sea surface temperature. Theoretical and Applied Climatology, 107, 1–13. https://doi.org/10.1007/s00704-011-0453-510.1007/s00704-011-0453-5
Shoaib, M., Shamseldin, A.Y., Melville, B.W., Khan, M.M., 2016. A comparison between wavelet based static and dynamic neural network approaches for runoff prediction. Journal of Hydrology, 535, 211–225. http://dx.doi.org/10.1016/j.jhydrol.2016.01.07610.1016/j.jhydrol.2016.01.076
Siad, S.M., Iacobellisb, V., Zdrulie, P., Gioiab, A., Stavid, I., Hoogenboom, G., 2019. A review of coupled hydrologic and crop growth models. Agricultural Water Management, 224, Article Number: 105746.10.1016/j.agwat.2019.105746
Teodoro, P.E., de Oliveira-Júnior, J.F., Da Cunha, E.R., Correa, C.C.G., Torres, F.E., Bacani, V.M., Ribeiro, L.P., 2016. Cluster analysis applied to the spatial and temporal variability of monthly rainfall in Mato Grosso do Sul State, Brazil. Meteorology and Atmospheric Physics, 128, 197–209. DOI: 10.1007/s00703-015-0408-y10.1007/s00703-015-0408-y
Wang, X.Y., Li, X., Zhu, J., Tanajura, C.A., 2018. The strengthening of Amazonian precipitation during the wet season driven by tropical sea surface temperature forcing. Environmental Research Letters, 13, Article Number: 094015. https://doi.org/10.1088/1748-9326/aadbb910.1088/1748-9326/aadbb9
Yaseen, Z.M., Jaafar, O., Deo, R.C., Kisi, O., Adamowski, J., Quilty, J., El-Shafie, A., 2016. Stream-flow forecasting using extreme learning machines: A case study in a semi-arid region in Iraq. Journal of Hydrology, 542, 603–614. http://dx.doi.org/10.1016/j.jhydrol.2016.09.03510.1016/j.jhydrol.2016.09.035
Zhang, X., Peng, Y., Zhang, C., Wang, B., 2015. Are hybrid models integrated with data preprocessing techniques suitable for monthly streamflow forecasting? Some experiment evidences. J. Hydrol., 530, 137–152. http://dx.doi.org/10.1016/j.jhydrol.2015.09.04710.1016/j.jhydrol.2015.09.047
Zeri, M., Cunha-Zeri, G., Gois, G., Lyra, G.B., Oliveira-Júnior, J.F., 2019. Exposure assessment of rainfall to inter-annual variability using the wavelet transform. International Journal of Climatology, 39, 568–578. https://doi.org/10.1002/joc.581210.1002/joc.5812