Have a personal or library account? Click to login
Dynamical bias correction procedure to improve global gridded daily streamflow data for local application in the Upper Blue Nile basin Cover

Dynamical bias correction procedure to improve global gridded daily streamflow data for local application in the Upper Blue Nile basin

Open Access
|Jan 2021

References

  1. Badr, H.S., Zaitchik, B.F., Guikema, S.D., 2014. Application of Statistical Models to the Prediction of Seasonal Rainfall Anomalies over the Sahel. J. Appl. Meteorol. Climatol., 53, 614–636. https://doi.org/10.1175/JAMC-D-13-0181.110.1175/JAMC-D-13-0181.1
  2. Bitew, M.M., Gebremichael, M., 2011. Assessment of satellite rainfall products for streamflow simulation in medium watersheds of the Ethiopian highlands. Hydrol. Earth Syst. Sci., 15, 1147–1155. https://doi.org/10.5194/hess-15-1147-201110.5194/hess-15-1147-2011
  3. Eisner, S., 2016. Comprehensive evaluation of the WaterGAP3 model across climatic, physiographic, and anthropogenic gradients. PhD thesis. University of Kassel, Kassel, Germany. Available at http://nbn-resolving.de/urn:nbn:de:hebis:34-2016031450014
  4. El-Sadek, A., Bleiweiss, M., Shukla, M., Guldan, S., Fernald, A., 2011. Alternative climate data sources for distributed hydrological modelling on a daily time step. Hydrol. Process., 25, 1542–1557. https://doi.org/10.1002/hyp.791710.1002/hyp.7917
  5. Elshamy, M.E., Seierstad, I.A., Sorteberg, A., 2009. Impacts of climate change on Blue Nile flows using bias-corrected GCM scenarios. Hydrol. Earth Syst. Sci., 13, 551–565. https://doi.org/10.5194/hess-13-551-200910.5194/hess-13-551-2009
  6. Erkossa, T., Awlachew, S., Haileslassie, A., Denekew Yilma, A., 2009. Impacts of improving water management of smallholder agriculture in the Upper Blue Nile Basin. https://doi.org/DOI:10.22004/ag.econ.212433
  7. Guetter, A.K., Georgakakos, K.P., Tsonis, A.A., 1996. Hydrologic applications of satellite data: 2. Flow simulation and soil water estimates. J. Geophys. Res. Atmos., 101, 26527–26538. https://doi.org/10.1029/96JD0165510.1029/96JD01655
  8. Haberlandt, U., Kite, G.W., 1998. Estimation of daily space–time precipitation series for macroscale hydrological modelling. Hydrol. Process., 12, 1419–1432. https://doi.org/10.1002/(SICI)1099-1085(199807)12:9<1419::AID-HYP645>3.0.CO;2-A10.1002/(SICI)1099-1085(199807)12:9<1419::AID-HYP645>3.0.CO;2-A
  9. Habib, E., Haile, A., Sazib, N., Zhang, Y., Rientjes, T., 2014. Effect of bias correction of satellite-rainfall estimates on runoff simulations at the source of the Upper Blue Nile. Remote Sens., 6, Article Number: 6688. https://doi.org/doi.org/10.3390/rs607668810.3390/rs6076688
  10. Hay, L.E., Clark, M.P., 2003. Use of statistically and dynamically downscaled atmospheric model output for hydrologic simulations in three mountainous basins in the western United States. J. Hydrol., 282, 56–75. https://doi.org/10.1016/s0022-1694(03)00252-x10.1016/S0022-1694(03)00252-X
  11. Hossain, F., Anagnostou, E.N., 2004. Assessment of current passive-microwave- and infrared-based satellite rainfall remote sensing for flood prediction. J. Geophys. Res. Atmos., 109, Article Number: D07102. https://doi.org/10.1029/2003JD00398610.1029/2003JD003986
  12. Jasper, K., Gurtz, J., Lang, H., 2002. Advanced flood forecasting in Alpine watersheds by coupling meteorological observations and forecasts with a distributed hydrological model. J. Hydrol., 267, 40–52. https://doi.org/https://doi.org/10.1016/S0022-1694(02)00138-510.1016/S0022-1694(02)00138-5
  13. Kanamaru, H., Kanamitsu, M., 2007. Fifty-seven-year California reanalysis downscaling at 10 km (CaRD10). Part II: Comparison with North American regional reanalysis. J. Clim., 20, 5572–5592. https://doi.org/10.1175/2007jcli1522.110.1175/2007JCLI1522.1
  14. Lachenbruch, P.A., Mickey, M.R., 1968. Estimation of error rates in discriminant analysis. Technometrics, 10, 1–11. https://doi.org/10.1080/00401706.1968.1049053010.1080/00401706.1968.10490530
  15. Lakew, H.B., Moges, S.A., Asfaw, D.H., 2017. Hydrological evaluation of satellite and reanalysis precipitation products in the Upper Blue Nile basin: A case study of Gilgel Abbay. Hydrology, 4, Article Number: 39. https://doi.org/https://doi.org/10.3390/hydrology403003910.3390/hydrology4030039
  16. Lakew, H.B., Moges, S.A., Anagnostou, E.N., Nikolopoulos, E.I., Asfaw, D.H., 2019. Evaluation of global water resources reanalysis runoff products for local water resources applications: Case study - Upper Blue Nile basin of Ethiopia. Water Resour. Manag., https://doi.org/10.1007/s11269-019-2190-y10.1007/s11269-019-2190-y
  17. Lakew, H.B., Moges, S.A., Asfaw, D.H., 2020. Hydrological performance evaluation of multiple satellite precipitation products in the upper Blue Nile basin, Ethiopia. J. Hydrol. Reg. Stud., 27, Article Number: 100664. https://doi.org/https://doi.org/10.1016/j.ejrh.2020.10066410.1016/j.ejrh.2020.100664
  18. Mei, Y., Nikolopoulos, E., Anagnostou, E., Zoccatelli, D., Borga, M., 2016. Error analysis of satellite precipitation-driven modeling of flood events in complex Alpine terrain. Remote Sens., 8, Article Number: 293. https://doi.org/https://doi.org/10.3390/rs804029310.3390/rs8040293
  19. Müller Schmied, H., Eisner, S., Franz, D., Wattenbach, M., Portmann, F.T., Flörke, M., Döll, P., 2014. Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration. Hydrol. Earth Syst. Sci., 18, 3511–3538. https://doi.org/10.5194/hess-18-3511-201410.5194/hess-18-3511-2014
  20. Nash, J.E., Sutcliffe, J. V., 1970. River flow forecasting through conceptual models part I - A discussion of principles. J. Hydrol., 10, 282–290. https://doi.org/10.1016/0022-1694(70)90255-610.1016/0022-1694(70)90255-6
  21. Nikolopoulos, E.I., Anagnostou, E.N., Hossain, F., Gebremichael, M., Borga, M., 2010. Understanding the scale relationships of uncertainty propagation of satellite rainfall through a distributed hydrologic model. J. Hydrometeorol., 11, 520–532. https://doi.org/10.1175/2009jhm1169.110.1175/2009JHM1169.1
  22. Schellekens, J., Dutra, E., Martínez-de la Torre, A., Balsamo, G., van Dijk, A., Sperna Weiland, F., Minvielle, M., Calvet, J.-C., Decharme, B., Eisner, S., Fink, G., Flörke, M., Peßenteiner, S., van Beek, R., Polcher, J., Beck, H., Orth, R., Calton, B., Burke, S., Dorigo, W., Weedon, G.P., 2017. A global water resources ensemble of hydrological models: the eartH2Observe Tier-1 dataset. Earth Syst. Sci. Data, 9, 389–413. https://doi.org/10.5194/essd-9-389-201710.5194/essd-9-389-2017
  23. Setegn, S.G., Srinivasan, R., Melesse, A.M., Dargahi, B., 2010. SWAT model application and prediction uncertainty analysis in the Lake Tana Basin, Ethiopia. Hydrol. Process., 24, 357–367. https://doi.org/10.1002/hyp.745710.1002/hyp.7457
  24. Stone, M., 1977. An asymptotic equivalence of choice of model by cross-validation and Akaike’s criterion. J. R. Stat. Soc. Ser. B, 39, 44–47. https://doi.org/10.1111/j.2517-6161.1977.tb01603.x10.1111/j.2517-6161.1977.tb01603.x
DOI: https://doi.org/10.2478/johh-2020-0040 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 41 - 48
Submitted on: Jan 31, 2020
Accepted on: Sep 25, 2020
Published on: Jan 26, 2021
Published by: Slovak Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Haileyesus Belay Lakew, Semu Ayalew Moges, published by Slovak Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.