Have a personal or library account? Click to login
Spatio-temporal analysis of remotely sensed and hydrological model soil moisture in the small Jičinka River catchment in Czech Republic Cover

Spatio-temporal analysis of remotely sensed and hydrological model soil moisture in the small Jičinka River catchment in Czech Republic

Open Access
|Jan 2021

References

  1. Albergel, C., Calvet, J.C., Mahfouf, J.F., Rüdiger, C., Barbu, A.L., Lafont, S., Roujean, J.L., Walker, J.P., Crapeau, M., Wigneron, J.P., 2010. Monitoring of water and carbon fluxes using a land data assimilation system: A case study for southwestern France. Hydrology and Earth System Sciences, 14, 1109–1124. DOI: 10.5194/hess-14-1109-201010.5194/hess-14-1109-2010
  2. Alvarez-Garreton, C., Ryu, D., Western, A.W., Crow, W.T., Su, C.-H., Robertson, D.R., 2016. Dual assimilation of satellite soil moisture to improve streamflow prediction in data scarce catchments. Water Resour. Res., 52, 5357–5375. DOI: 10.1002/2015WR01842910.1002/2015WR018429
  3. Badou, D.F., Diekkruger, B., Montzka, C., 2018. Validation of satellite soil moisture in the absence of in situ soil moisture: the ecase of the Tropical Yankin Basin. South African Journal of Geomatics, 7, 3. http://dx.doi.org/10.4314/sajg.v7i3.310.4314/sajg.v7i3.3
  4. Beven, K., 2006. A manifesto for the equifinality thesis. Journal of Hydrology, 320, 18–30.10.1016/j.jhydrol.2005.07.007
  5. Brocca, L., Melone, F., Moramarco, T., Wagner, W., Naeimi, V., Bartalis, Z., Hasenauer, S., 2010. Improving runoff prediction through the assimilation of the ASCAT soil moisture product. Hydrology and Earth System Sciences, 14, 1881–1893. DOI:10.5194/hess-14-1881-201010.5194/hess-14-1881-2010
  6. Brocca, L., Hasenauer, S., Lacava, T., Melone, F., Moramarco, T., Wagner, W., Dorigo, W., Matgen, P., Martinez-Fernandez, J., Llorens, P., et al., 2011. Soil moisture estimation through ascat and amsr-e sensors: An intercomparison and validation study across europe. Remote Sens. Environ., 115, 3390–3408.10.1016/j.rse.2011.08.003
  7. Chiew, F., McMahon, T., 1994. Application of the daily rainfall–runoff model MODHYDROLOG to 28 Australian catchments. Journal of Hydrology, 153, 383–416.10.1016/0022-1694(94)90200-3
  8. Corradini, C., 2014. Soil moisture in the development of hydro-logical processes and its determination at different spatial scales. J. Hydrol., 516, 1–5.10.1016/j.jhydrol.2014.02.051
  9. Crow, W.T., Berg, A.A., Cosh, M.H., Loew, A., Mohanty, B.P., Panciera, R., de Rosnay, P., Ryu, D., Walker, J.P., 2012. Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys., 50, 2. https://doi.org/10.1029/2011RG00037210.1029/2011RG000372
  10. Dai, Y., Xin, Q.,Wei, N., Zhang, Y., Shangguan,W.,Zuan, H., Zhang, Z., Liu,S., Lu, X., 2019. A global high resolution data set of soil hydraulic and thermal properties for land surface modelling. Journal of Advances in Modelling Earth Systems, 11, 9, 2996–3023. https://doi.org/10.1029/2019MS00178410.1029/2019MS001784
  11. Danhelka, J., Kubat J., Šercl P., Čekal, R. (Eds.), 2014. Floods in the Czech Republic in June 2013. Czech Hydrometeoro-logical Institute, Prague, Czech Republic.
  12. Dorigo, W.A., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, D.P., Hirschi, M., Ikonen, J., De Jeu, R., Kidd, R., Lahoz, W., Liu, Y.Y., Miralles, D., Lecomte, P., 2017. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sensing of Environment, 203, 185–215. https://doi.org/10.1016/j.rse.2017.07.00110.1016/j.rse.2017.07.001
  13. Đukić, V., Radić, Z., 2014. GIS based estimation of sediment discharge and areas of soil erosion and deposition for the torrential Lukovska River Catchment in Serbia. Water Resources Management, 28, 13, 4567–4581. https://link.springer.com/article/10.1007/s11269-014-0751-710.1007/s11269-014-0751-7
  14. Đukić, V., Radić, Z., 2016. Sensitivity analysis of a physically based distributed model. Water Resources Management, 3, 1669–1684. https://link.springer.com/article/10.1007/s11269-016-1243-810.1007/s11269-016-1243-8
  15. Ewen, J., Parkin, G., O’Connell, P.E., 2000. SHETRAN: Distributed river basin flow and transport modelling system. ASCE J. Hydrologic Eng., 5, 250–258. Available at: https://research.ncl.ac.uk/shetran/SHETRAN_ASCE_paper.pdf10.1061/(ASCE)1084-0699(2000)5:3(250)
  16. Gruber, A., Dorigo, W.A., Crow, W., Wagner, W., 2017. Triple collocation-based merging of satellite soil moisture retrievals. IEEE Transactions on Geoscience and Remote Sensing, 55, 12, 1–13. https://doi.org/10.1109/TGRS.2017.273407010.1109/TGRS.2017.2734070
  17. Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., Dorigo, W., 2019. Evolution of the ESA CCI Soil Moisture Climate Data Records and their underlying merging methodology. Earth System Science Data, 11, 717–739. https://doi.org/10.5194/essd-11-717-201910.5194/essd-11-717-2019
  18. Gwak, Y., Kim, S., 2017. Factors affecting soil moisture spatial variability for a humid forest hillslope. Hydrol. Processes, 31, 431–445.10.1002/hyp.11039
  19. Hengl, T., Mendes de Jesus, J., Heuvelink, G.B.M., Ruiperez Gonzalez, M., Kilibarda, M., Blagoti´c, A., Shangguan, W., Wright, M.N., Geng, X., Bauer-Marschallinger, B., et al., 2017. Soilgrids 250 m: Global gridded soil information based on machine learning. PLoS ONE, 12, e0169748.10.1371/journal.pone.0169748
  20. Hupet, F., Vanclooster, M., 2002. Intraseasonal dynamics of soil moisture variability within a small agricultural maize cropped field. J. Hydrol., 261, 86–101.10.1016/S0022-1694(02)00016-1
  21. IPCC, 2012. Managing the risks of extreme events and disasters to advance climate change adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change [Field, C.B., V. Barros, T.F., Stocker, D., Qin, D.J., Dokken, K.L., Ebi, M.D., Mastrandrea, K.J., Mach, G.-K., Plattner, S.K., Allen, M.T., Midgley, P.M. (eds.)]. Cambridge University Press, Cambridge, UK, and New York, NY, USA, 582 p.
  22. Jackson, T.J., Cosh, M.H., Bindlish, R., Starks, P.J., Bosch, D.D., Seyfried, M., Goodrich, D.C., Moran, M.S., Du, J., 2010. Validation of advanced microwave scanning radiometer soil moisture products. IEEE Transactions on Geoscience and Remote Sensing, 48, 12, 4256–4272. DOI: 10.1109/TGRS.2010.205103510.1109/TGRS.2010.2051035
  23. Koster, R.D., Mahanama, S.P.P., Livneh, B., Lettenmaier, D.P., Reichle, R.H., 2010. Skill in streamflow forecasts derived from large - scale estimates of soil moisture and snow. Nature Geosciences, 3, 613–616. DOI: 10.1038/ngeo94410.1038/ngeo944
  24. Koster, R.D., Brocca, L., Crow, W.T., Burgin, M.S., De Lannoy, G.J.M., 2016. Precipitation estimation using l-band and c-band soil moisture retrievals. Water Resour. Res., 52, 7213–7225.10.1002/2016WR019024
  25. Laiolo, P., Gabellani, S., Pulvirenti, L., Boni, G., Rudari, R., et. al., 2014. Validation of remote sensing soil moisture products with a distributed continuous hydrological model. In: IEEE Geoscience and Remote Sensing Symposium. Quebec City, pp. 3319–3322. DOI: 10.1109/IGARSS.2014.6947190.10.1109/IGARSS.2014.6947190
  26. Lievens, H., S.K., Tomer, A., Al Bitar, G., De Lannoy, M., Drusch, G., Dumedah, H.-J. H., Franssen, Y., Kerr, B., Martens, Pan, M., 2015. SMOS soil moisture assimilation for improved hydrologic simulation in the Murray Darling Basin, Australia. Remote Sens. Environ., 168, 146–162.10.1016/j.rse.2015.06.025
  27. López López, P., Sutanudjaja, E.H., Schellekens, J., Sterk, G., and Bierkens, M.F.P., 2017. Calibration of a large-scale hydrological model using satellite-based soil moisture and evapotranspiration products. Hydrol. Earth Syst. Sci., 21, 3125–3144. https://doi.org/10.5194/hess-21-3125-2017.10.5194/hess-21-3125-2017
  28. Manfreda, S., McCabe, M.F., Fiorentino, M., Rodriguez-Iturbe, I., Wood, E.F., 2007. Scaling characteristics of spatial patterns of soil moisture from distributed modelling. Adv. Water Resour., 30, 2145–2150.10.1016/j.advwatres.2006.07.009
  29. Molnar, D.K., Julien, P.Y., 2000. Grid-size effects on surface runoff modelling. Journal of Hydrologic Engineering, 5, 1.10.1061/(ASCE)1084-0699(2000)5:1(8)
  30. Montzka, C., Rötzer, K., Bogena, H.R., Sanchez, N., Vereecken, H., 2018. A new soil moisture downscaling approach for SMAP, SMOS, and ASCAT by predicting sub-grid variability. Remote Sens., 10, 427.10.3390/rs10030427
  31. Mualem, Y., 1976. A new model predicting the hydraulic conductivitynof unsaturated porous media. Water Resour. Res., 12, 513–522.10.1029/WR012i003p00513
  32. Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models: Part I. A discussion of principles. Journal of Hydrology, 27, 3, 282–290.10.1016/0022-1694(70)90255-6
  33. Pavlik, F., Dumbrovský, M., 2014. Influence of landscape retention capacity upon flood processes in Jičínka River basin. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 62, 1, 191–199. DOI: 10.11118/actaun20146201019110.11118/actaun201462010191
  34. Parajka, J., Naeimi, V., Blöschl, G., Wagner, W., Merz, R., Scipal, K., 2006. Assimilating scatterometer soil moisture data into conceptual hydrologic models at the regional scale. Hydrol. Earth Syst. Sci., 10, 353–368.10.5194/hess-10-353-2006
  35. Parajka, J., Naeimi, V., Blöschl, G., Komma, J., 2009. Matching ERS scatterometer based soil moisture patterns with simulations of a conceptual dual layer hydrologic model over Austria. Hydrol. Earth Syst. Sci., 13, 259–271, https://doi.org/10.5194/hess-13-259-200910.5194/hess-13-259-2009
  36. Peng, J., Loew, A., Zhang, S., Wang, J., Niesel, J., 2017. Spatial downscaling of satellite soil moisture data using a Vegetation Temperature Condition Index. IEEE Trans. Geosci. Remote Sens., 54, 1, 558–566.10.1109/TGRS.2015.2462074
  37. Pereira, A.R., Pruitt, W.O., 2004. Adaptation of the Thornthwaite scheme for estimating daily reference evapotranspiration. Agricultural Water Management, 66, 3, 251–257.10.1016/j.agwat.2003.11.003
  38. Qu, W., Bogena, H.R., Huisman, J.A., Vanderborght, J., Schuh, M., Priesack, E., Vereecken, H., 2015. Predicting subgrid variability of soil water content from basic soil information. Geophys. Res. Lett., 42, 789–796.10.1002/2014GL062496
  39. Richards, L.A., 1931. Capillary conduction of liquids through porous mediums. Physics, 1, 5, 318–333. DOI: 10.1063/1.174501010.1063/1.1745010
  40. Rodell, M., Houser, P., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., 2004. The global land data assimilation system. Bull. Am. Meteorol. Soc., 85, 381–394. https://doi.org/10.1175/BAMS-85-3-38110.1175/BAMS-85-3-381
  41. Rosenbaum, U., Bogena, H.R., Herbst, M., Huisman, J.A., Peterson, T.J., Weuthen, A., Western, A.W., Vereecken, H., 2012. Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale. Water Resour. Res., 48, 10. https://doi.org/10.1029/2011WR01151810.1029/2011WR011518
  42. Rötzer, K., Montzka, C., Bogena, H., Wagner, W., Kerr, Y.H., Kidd, R., Vereecken, H., 2014. Catchment scale validation of smos and ascat soil moisture products using hydrological modeling and temporal stability analysis. J. Hydrol., 519, 934–946.10.1016/j.jhydrol.2014.07.065
  43. Saint-Venant, A.J.C.B., 1871. Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et a l’introduction de marées dans leurs lits. Comptes rendus hebdomadaires des séances de l’Académie des sciences, 73, 147–154, 237–240.
  44. Stoorvogel, J.J., Bakkenes, M., Temme, A.J.A.M., Batjes, N.H., ten Brink, B.J.E., 2017. S-world: A global soil map for environmental modelling. Land Degrad. Dev., 28, 22–33.10.1002/ldr.2656
  45. Shangguan, W., Dai, Y.J., Duan, Q.Y., Liu, B.Y., Yuan, H., 2014. A global soil data set for earth system modeling. J. Adv. Model. Earth Syst., 6, 249–263.10.1002/2013MS000293
  46. Srivastava, P.K., Han, D., Rico-Ramirez, M.A., Islam, T., 2013. Appraisal of SMOS soil moisture at a catchment scale in a temperate maritime climate. Journal of Hydrology, 498, 292–304.10.1016/j.jhydrol.2013.06.021
  47. Teuling, A.J., Troch, P.A., 2005. Improved understanding of soil moisture variability dynamics. Geophys. Res. Lett., 32.10.1029/2004GL021935
  48. Thiessen, A.H., 1911. Precipitation averages for large areas. Monthly Weather Review, 39, 7, 1082–1084. http://dx.doi.org/10.1175/1520-0493(1911)39<1082b:PAFLA>2.0.CO;210.1175/1520-0493(1911)39<1082b:PAFLA>2.0.CO;2
  49. van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 892–898.10.2136/sssaj1980.03615995004400050002x
  50. Vereecken, H., Huisman, J.A., Pachepsky, Y., Montzka, C., van der Kruk, J., Bogena, H., Weihermüller, L., Herbst, M., Martinez, G., Vanderborght, J., 2014. On the spatio-temporal dynamics of soil moisture at the field scale. J. Hydrol., 516, 76–96.10.1016/j.jhydrol.2013.11.061
  51. Verhoest, N.E.C., et al., 2015. Copula-based downscaling of coarse-scale soil moisture observations with implicit bias correction, IEEE Trans.Geosci. Remote Sens., 53, 6, 3507–3521.10.1109/TGRS.2014.2378913
  52. Wanders, N., Bierkens, M.F.P., Jong, S.M., Roo, A., Karssenberg, D., 2013. The benefits of using remotely sensed soil moisture in parameter identification of large scale hydrological models. Water Resour. Res., 50, 6874–6891. DOI: 10.1002/2013WR01463910.1002/2013WR014639
  53. Wang, L., Qu, J.J., 2009. Satellite remote sensing applications for surface soil moisture monitoring: a review. Frontiers of Earth Science in China, 3, 2, 237–247.10.1007/s11707-009-0023-7
  54. Western, A.W., Grayson, R.B., Bloschl, G., Willgoose, G.R., McMahon, T.A., 1999. Observed spatial organization of soil moisture and its relation to terrain indices. Water Resour. Res., 35, 797–810.10.1029/1998WR900065
  55. Xiong, L., Yang, H., Zeng, L., Xu, C.-Y., 2018. Evaluating Consistency between the Remotely Sensed Soil Moisture and the Hydrological Model-Simulated Soil Moisture in the Qujiang Catchment of China. Water, 10, 3, 291. https://doi.org/10.3390/w1003029110.3390/w10030291
  56. Ye, W., Bates, B.C., Viney, N.R., Silvapan, M., Jakeman, A.J., 1997. Performance of conceptual rainfall–runoff models in low-yielding ephemeral catchments. Water Resources Research, 33, 1, 153–166.10.1029/96WR02840
DOI: https://doi.org/10.2478/johh-2020-0038 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 1 - 12
Submitted on: Sep 27, 2019
Accepted on: Sep 23, 2020
Published on: Jan 26, 2021
Published by: Slovak Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Vesna Đukić, Ranka Erić, Miroslav Dumbrovsky, Veronika Sobotkova, published by Slovak Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.