Albergel, C., Calvet, J.C., Mahfouf, J.F., Rüdiger, C., Barbu, A.L., Lafont, S., Roujean, J.L., Walker, J.P., Crapeau, M., Wigneron, J.P., 2010. Monitoring of water and carbon fluxes using a land data assimilation system: A case study for southwestern France. Hydrology and Earth System Sciences, 14, 1109–1124. DOI: 10.5194/hess-14-1109-201010.5194/hess-14-1109-2010
Alvarez-Garreton, C., Ryu, D., Western, A.W., Crow, W.T., Su, C.-H., Robertson, D.R., 2016. Dual assimilation of satellite soil moisture to improve streamflow prediction in data scarce catchments. Water Resour. Res., 52, 5357–5375. DOI: 10.1002/2015WR01842910.1002/2015WR018429
Badou, D.F., Diekkruger, B., Montzka, C., 2018. Validation of satellite soil moisture in the absence of in situ soil moisture: the ecase of the Tropical Yankin Basin. South African Journal of Geomatics, 7, 3. http://dx.doi.org/10.4314/sajg.v7i3.310.4314/sajg.v7i3.3
Brocca, L., Melone, F., Moramarco, T., Wagner, W., Naeimi, V., Bartalis, Z., Hasenauer, S., 2010. Improving runoff prediction through the assimilation of the ASCAT soil moisture product. Hydrology and Earth System Sciences, 14, 1881–1893. DOI:10.5194/hess-14-1881-201010.5194/hess-14-1881-2010
Brocca, L., Hasenauer, S., Lacava, T., Melone, F., Moramarco, T., Wagner, W., Dorigo, W., Matgen, P., Martinez-Fernandez, J., Llorens, P., et al., 2011. Soil moisture estimation through ascat and amsr-e sensors: An intercomparison and validation study across europe. Remote Sens. Environ., 115, 3390–3408.10.1016/j.rse.2011.08.003
Chiew, F., McMahon, T., 1994. Application of the daily rainfall–runoff model MODHYDROLOG to 28 Australian catchments. Journal of Hydrology, 153, 383–416.10.1016/0022-1694(94)90200-3
Corradini, C., 2014. Soil moisture in the development of hydro-logical processes and its determination at different spatial scales. J. Hydrol., 516, 1–5.10.1016/j.jhydrol.2014.02.051
Dai, Y., Xin, Q.,Wei, N., Zhang, Y., Shangguan,W.,Zuan, H., Zhang, Z., Liu,S., Lu, X., 2019. A global high resolution data set of soil hydraulic and thermal properties for land surface modelling. Journal of Advances in Modelling Earth Systems, 11, 9, 2996–3023. https://doi.org/10.1029/2019MS00178410.1029/2019MS001784
Danhelka, J., Kubat J., Šercl P., Čekal, R. (Eds.), 2014. Floods in the Czech Republic in June 2013. Czech Hydrometeoro-logical Institute, Prague, Czech Republic.
Dorigo, W.A., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, D.P., Hirschi, M., Ikonen, J., De Jeu, R., Kidd, R., Lahoz, W., Liu, Y.Y., Miralles, D., Lecomte, P., 2017. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sensing of Environment, 203, 185–215. https://doi.org/10.1016/j.rse.2017.07.00110.1016/j.rse.2017.07.001
Đukić, V., Radić, Z., 2014. GIS based estimation of sediment discharge and areas of soil erosion and deposition for the torrential Lukovska River Catchment in Serbia. Water Resources Management, 28, 13, 4567–4581. https://link.springer.com/article/10.1007/s11269-014-0751-710.1007/s11269-014-0751-7
Đukić, V., Radić, Z., 2016. Sensitivity analysis of a physically based distributed model. Water Resources Management, 3, 1669–1684. https://link.springer.com/article/10.1007/s11269-016-1243-810.1007/s11269-016-1243-8
Ewen, J., Parkin, G., O’Connell, P.E., 2000. SHETRAN: Distributed river basin flow and transport modelling system. ASCE J. Hydrologic Eng., 5, 250–258. Available at: https://research.ncl.ac.uk/shetran/SHETRAN_ASCE_paper.pdf10.1061/(ASCE)1084-0699(2000)5:3(250)
Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., Dorigo, W., 2019. Evolution of the ESA CCI Soil Moisture Climate Data Records and their underlying merging methodology. Earth System Science Data, 11, 717–739. https://doi.org/10.5194/essd-11-717-201910.5194/essd-11-717-2019
Hengl, T., Mendes de Jesus, J., Heuvelink, G.B.M., Ruiperez Gonzalez, M., Kilibarda, M., Blagoti´c, A., Shangguan, W., Wright, M.N., Geng, X., Bauer-Marschallinger, B., et al., 2017. Soilgrids 250 m: Global gridded soil information based on machine learning. PLoS ONE, 12, e0169748.10.1371/journal.pone.0169748
Hupet, F., Vanclooster, M., 2002. Intraseasonal dynamics of soil moisture variability within a small agricultural maize cropped field. J. Hydrol., 261, 86–101.10.1016/S0022-1694(02)00016-1
IPCC, 2012. Managing the risks of extreme events and disasters to advance climate change adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change [Field, C.B., V. Barros, T.F., Stocker, D., Qin, D.J., Dokken, K.L., Ebi, M.D., Mastrandrea, K.J., Mach, G.-K., Plattner, S.K., Allen, M.T., Midgley, P.M. (eds.)]. Cambridge University Press, Cambridge, UK, and New York, NY, USA, 582 p.
Manfreda, S., McCabe, M.F., Fiorentino, M., Rodriguez-Iturbe, I., Wood, E.F., 2007. Scaling characteristics of spatial patterns of soil moisture from distributed modelling. Adv. Water Resour., 30, 2145–2150.10.1016/j.advwatres.2006.07.009
Montzka, C., Rötzer, K., Bogena, H.R., Sanchez, N., Vereecken, H., 2018. A new soil moisture downscaling approach for SMAP, SMOS, and ASCAT by predicting sub-grid variability. Remote Sens., 10, 427.10.3390/rs10030427
Mualem, Y., 1976. A new model predicting the hydraulic conductivitynof unsaturated porous media. Water Resour. Res., 12, 513–522.10.1029/WR012i003p00513
Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models: Part I. A discussion of principles. Journal of Hydrology, 27, 3, 282–290.10.1016/0022-1694(70)90255-6
Pavlik, F., Dumbrovský, M., 2014. Influence of landscape retention capacity upon flood processes in Jičínka River basin. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 62, 1, 191–199. DOI: 10.11118/actaun20146201019110.11118/actaun201462010191
Parajka, J., Naeimi, V., Blöschl, G., Wagner, W., Merz, R., Scipal, K., 2006. Assimilating scatterometer soil moisture data into conceptual hydrologic models at the regional scale. Hydrol. Earth Syst. Sci., 10, 353–368.10.5194/hess-10-353-2006
Parajka, J., Naeimi, V., Blöschl, G., Komma, J., 2009. Matching ERS scatterometer based soil moisture patterns with simulations of a conceptual dual layer hydrologic model over Austria. Hydrol. Earth Syst. Sci., 13, 259–271, https://doi.org/10.5194/hess-13-259-200910.5194/hess-13-259-2009
Rodell, M., Houser, P., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., 2004. The global land data assimilation system. Bull. Am. Meteorol. Soc., 85, 381–394. https://doi.org/10.1175/BAMS-85-3-38110.1175/BAMS-85-3-381
Rosenbaum, U., Bogena, H.R., Herbst, M., Huisman, J.A., Peterson, T.J., Weuthen, A., Western, A.W., Vereecken, H., 2012. Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale. Water Resour. Res., 48, 10. https://doi.org/10.1029/2011WR01151810.1029/2011WR011518
Rötzer, K., Montzka, C., Bogena, H., Wagner, W., Kerr, Y.H., Kidd, R., Vereecken, H., 2014. Catchment scale validation of smos and ascat soil moisture products using hydrological modeling and temporal stability analysis. J. Hydrol., 519, 934–946.10.1016/j.jhydrol.2014.07.065
Saint-Venant, A.J.C.B., 1871. Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et a l’introduction de marées dans leurs lits. Comptes rendus hebdomadaires des séances de l’Académie des sciences, 73, 147–154, 237–240.
Stoorvogel, J.J., Bakkenes, M., Temme, A.J.A.M., Batjes, N.H., ten Brink, B.J.E., 2017. S-world: A global soil map for environmental modelling. Land Degrad. Dev., 28, 22–33.10.1002/ldr.2656
Shangguan, W., Dai, Y.J., Duan, Q.Y., Liu, B.Y., Yuan, H., 2014. A global soil data set for earth system modeling. J. Adv. Model. Earth Syst., 6, 249–263.10.1002/2013MS000293
Srivastava, P.K., Han, D., Rico-Ramirez, M.A., Islam, T., 2013. Appraisal of SMOS soil moisture at a catchment scale in a temperate maritime climate. Journal of Hydrology, 498, 292–304.10.1016/j.jhydrol.2013.06.021
van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 892–898.10.2136/sssaj1980.03615995004400050002x
Vereecken, H., Huisman, J.A., Pachepsky, Y., Montzka, C., van der Kruk, J., Bogena, H., Weihermüller, L., Herbst, M., Martinez, G., Vanderborght, J., 2014. On the spatio-temporal dynamics of soil moisture at the field scale. J. Hydrol., 516, 76–96.10.1016/j.jhydrol.2013.11.061
Wanders, N., Bierkens, M.F.P., Jong, S.M., Roo, A., Karssenberg, D., 2013. The benefits of using remotely sensed soil moisture in parameter identification of large scale hydrological models. Water Resour. Res., 50, 6874–6891. DOI: 10.1002/2013WR01463910.1002/2013WR014639
Xiong, L., Yang, H., Zeng, L., Xu, C.-Y., 2018. Evaluating Consistency between the Remotely Sensed Soil Moisture and the Hydrological Model-Simulated Soil Moisture in the Qujiang Catchment of China. Water, 10, 3, 291. https://doi.org/10.3390/w1003029110.3390/w10030291
Ye, W., Bates, B.C., Viney, N.R., Silvapan, M., Jakeman, A.J., 1997. Performance of conceptual rainfall–runoff models in low-yielding ephemeral catchments. Water Resources Research, 33, 1, 153–166.10.1029/96WR02840