Have a personal or library account? Click to login
Linking soils and streams during events: response of stream water K+ concentration to soil exchangeable K+ concentration in small catchments with fragipan soils (Carpathian Foothills, Poland) Cover

Linking soils and streams during events: response of stream water K+ concentration to soil exchangeable K+ concentration in small catchments with fragipan soils (Carpathian Foothills, Poland)

Open Access
|Jan 2021

References

  1. Alfaro, M.A., Gregory, P.J., Jarvis, S.C., 2004a. Dynamics of potassium leaching on a hillslope grassland soil. J. Environ. Qual., 33, 1, 192–200. https://doi.org/10.2134/jeq2004.192010.2134/jeq2004.1920
  2. Alfaro, M.A., Jarvis, S.C., Gregory, P.J., 2004b. Factors affecting potassium leaching in different soils. Soil Use Manage., 20, 2, 182–189. https://doi.org/10.1111/j.1475-2743.2004.tb00355.x10.1111/j.1475-2743.2004.tb00355.x
  3. Anderson, S.P., Dietrich, W.E., Torres, R., Montgomery, D.R., Loague, K., 1997. Concentration-discharge relationships in runoff from steep, unchanneled catchment. Water Resour. Res., 33, 1, 211–225. https://doi.org/10.1029/96WR0271510.1029/96WR02715
  4. Barré, P., Velde, B., Abbadie, L., 2007. Dynamic role of ‘‘illite-like’’ clay minerals in temperate soils: facts and hypotheses. Biogeochemistry, 82, 77–88. https://doi.org/10.1007/s10533-006-9054-210.1007/s10533-006-9054-2
  5. Barré, P., Velde, B., Fontaine, C., Catel, N., Abbadie, L., 2008. Which 2:1 clay minerals are involved in the soil potassium reservoir? Insights from potassium addition or removal experiments on three temperate grassland soil clay assemblages. Geoderma, 146, 216–23. https://doi.org/10.1016/j.geoderma.2008.05.02210.1016/j.geoderma.2008.05.022
  6. Bestland, E., Milgate, S., Chittleborough, D., Van Leeuwen, J., Pichler, M., Soloninka, L., 2009. The significance and lag-time of deep through flow: an example from a small, ephemeral catchment with contrasting soil types in the Adelaide Hills, South Australia. Hydrol. Earth Syst. Sci., 13, 1201–1214. https://doi.org/10.5194/hess-13-1201-200910.5194/hess-13-1201-2009
  7. Bryndal, T., 2015. Local flash floods in Central Europe: A case study of Poland, Norsk Geografisk Tidsskrift., 69, 288–298. https://doi.org/10.1080/00291951.2015.107224210.1080/00291951.2015.1072242
  8. Butturini, A, Gallart, F., Latron, J., Vazquez, E., Sabater, F., 2006. Cross-site comparison of variability of DOC and nitrate c–q hysteresis during the autumn–winter period in three Mediterranean headwater streams: a synthetic approach. Biogeochemistry, 77, 327–349. https://doi.org/10.1007/s10533-005-0711-71
  9. Caissie, D., Pollock, T.L., Cunjak, R.A., 1996. Variation in stream water chemistry and hydrograph separation in a small drainage basin. J. Hydrol., 178, 137–157. https://doi.org/10.1016/0022-1694(95)02806-410.1016/0022-1694(95)02806-4
  10. Christophersen, N., Neal, C., Hooper, R.P., Vogt, R.D., Andersen, S., 1990. Modeling streamwater chemistry as a mixture of soil water end-members - a step towards second generation acidification models. J. Hydrol., 116, 1, 307–320. https://doi.org/10.1016/0022-1694(90)90130-P10.1016/0022-1694(90)90130-P
  11. Coles, A.E., McDonnell, J., 2018. Fill and spill drives runoff connectivity over frozen ground. J. Hydrol., 558, 115–128. https://doi.org/10.1016/j.jhydrol.2018.01.01610.1016/j.jhydrol.2018.01.016
  12. Dingman, S.L., 2002. Physical Hydrology. Prentice Hall, Upper Saddle River, 646 p.
  13. Dobermann, A., Cruz, P.C.S, Cassman, K.G., 1996. Fertilizer inputs, nutrient balance, and soil nutrient-supplying power in intensive, irrigated rice systems. I. Potassium uptake and K balance. Nutr. Cycl. Agroecosys., 46, 1–10. https://doi.org/10.1007/BF0021021910.1007/BF00210219
  14. Edwards, A.M.C., 1973. The variation of dissolved constituents with discharge in some Norfolk Rivers. J. Hydrol., 18, 219–242. https://doi.org/10.1016/0022-1694(73)90049-810.1016/0022-1694(73)90049-8
  15. Elsenbeer, H., Lack, A., Cassel, K., 1995a. Chemical fingerprints of hydrological compartments and flow paths at La Cuenca, western Amazonia. Water Resour. Res., 31, 12, 3051–3058. https://doi.org/10.1029/95WR0253710.1029/95WR02537
  16. Elsenbeer, H., Lorieri, D., Bonell, M., 1995b. Mixing model approaches to estimate storm flow sources in an overland flow-dominated tropical rain forest catchment. Water Resour. Res., 31, 9, 2267–2278. https://doi.org/10.1029/95WR0165110.1029/95WR01651
  17. Evans, C., Davies, T.D., 1998. Causes of concentration/discharge hysteresis and its potential as a tool for the analysis of episode hydrochemistry. Water Resour. Res., 34, 129–137. https://doi.org/10.1029/97WR0188110.1029/97WR01881
  18. Foster, I.D.L., 1978. A multivariate model of storm-period solute behavior. J. Hydrol., 39, 339–353. https://doi.org/10.1016/0022-1694(78)90010-010.1016/0022-1694(78)90010-0
  19. Gburek, W.J., Needelman, B.A., Srinivasan, M.S., 2006. Fragipan controls on runoff generation: Hydropedological implications at landscape and watershed scales. Geoderma, 131, 330–344. https://doi.org/10.1016/j.geoderma.2005.03.02110.1016/j.geoderma.2005.03.021
  20. Gee, G.W., Bauder, J.W., 1986. Particle-size analysis. In: Klute, A. (Ed.): Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. Agronomy Monograph. Soil Science Society of America. Madison, Wisconsin, pp. 427–445.
  21. Griffioen, J., 2001. Potassium adsorption ratios as an indicator for the fate of agricultural potassium in groundwater. J. Hydrol., 254, 244–254. https://doi.org/10.1016/S0022-1694(01)00503-010.1016/S0022-1694(01)00503-0
  22. GUS, 2012. Means of production in agriculture in the 2010/2011 farming year. Statistical information and elaborations (2011). Central Statistical Office in Poland, Warszawa.
  23. Hem, J.D., 1985. Study and interpretation of the chemical characteristics of natural water, U.S. Geological Survey, Alexandria, 264 p.
  24. Hill, A.R., 1993. Base cation chemistry of storm runoff in a forested headwater wetland. Water Resour. Res., 29, 8, 2663–2673. https://doi.org/10.1029/93WR0075810.1029/93WR00758
  25. Holz, G.K., 2010. Sources and processes of contaminant loss from an intensively grazed catchment inferred from patterns in discharge and concentration of thirteen analytes using high intensity sampling. J. Hydrol., 383, 194–208. https://doi.org/10.1016/j.jhydrol.2009.12.03610.1016/j.jhydrol.2009.12.036
  26. IUSS Working Group WRB, 2015. World reference base for soil resources 2014. International soil classification system for naming soil and creating legends for soil maps. World Soil Resources Reports, 106. Food and Agriculture Organization of the United Nations, Rome.
  27. Irmak, S., Sürücü, A.K., 1999. Effects of different parent materials on some plant nutrients and heavy metals in the arid regions of Turkey. In: Anac, D., Martin-PrÉvel, P. (Eds.): Improved crop quality by nutrient management. Developments in Plant and Soil Sciences, vol. 86. Springer, Netherlands, pp. 289–291. https://doi.org/10.1007/978-0-585-37449-910.1007/978-0-585-37449-9
  28. Jayalakshmi, T., Santhakumaran, A., 2011. Statistical Normalization and Back Propagation for Classification, International Journal of Computer Theory and Engineering, 3, 1, 89–93.10.7763/IJCTE.2011.V3.288
  29. Jobbagy, E.G., Jackson, R.B., 2004. The uplift of soil nutrients by plants: biogeochemical consequences across scales. Ecology, 85, 9, 2380–2389. https://doi.org/10.1890/03-024510.1890/03-0245
  30. Kayser, M., Isselstein, J., 2005. Potassium cycling and losses in grassland systems: a review. Grass Forage Sci., 60, 213–224. https://doi.org/10.1111/j.1365-2494.2005.00478.x10.1111/j.1365-2494.2005.00478.x
  31. Klimek, M., 2005. Pedogenetical controls on retention properties of silty covers in the Carpathian Foothills marginal zone. Soil Science Annual, 56, 1/2, 85–96. (In Polish.)
  32. Ladouche, B., Probst, A., Viville, D., Idir, S., Baque, D., Loubet, M., Probst, J-L., Bariac, T., 2001. Hydrograph separation using isotopic, chemical and hydrological approaches (Strengbach catchment, France). J. Hydrol., 242, 255–274. https://doi.org/10.1016/S0022-1694(00)00391-710.1016/S0022-1694(00)00391-7
  33. Likens, G.E., 2013. Biogeochemistry of a Forested Ecosystem. Springer, New York – Heidelberg – Dordrecht – London. https://doi.org/10.1007/978-1-4614-7810-210.1007/978-1-4614-7810-2
  34. Likens, G.E., Driscoll, C.T., Buso, D.C., Siccama, D.F., Johnson, C.E., Lovett, G.M., Ryan, D.F., Fahey, T., Reiners, W.A., 1994. The biogeochemistry of potassium at Hubbard Brook. Biogeochemistry, 25, 61–12. https://doi.org/10.1007/BF0000088110.1007/BF00000881
  35. Lindbo, D.L., Rhoton, F.E., Bigham, J.M., Hudnall, W.H., Jones, F.S, Smeck, N.E., Tyler, D.D., 1994. Bulk density and fragipan identification in loess soils of the Lower Mississippi River Valley. Soil Sci. Soc. Am. J., 58, 884–891. https://doi.org/10.2136/sssaj1994.03615995005800030036x10.2136/sssaj1994.03615995005800030036x
  36. Lloyd, C.E.M., Freer, J.E., Johnes, P.J., Collins, A.L., 2016. Technical Note: Testing an improved index for analysing storm discharge–concentration hysteresis. Hydrol. Earth Syst. Sci., 20, 2, 625–632. https://doi.org/10.5194/hess-20-625-201610.5194/hess-20-625-2016
  37. Małek, S., Astel, A., 2008. Throughfall chemistry in spruce chronosequence in southern Poland. Environ. Pollut., 155, 517–527. https://doi.org/10.1016/j.envpol.2008.01.03110.1016/j.envpol.2008.01.03118358577
  38. McDaniel, P.A., Regan, M.P., Brooks, E., Boll, J., Barndt, S., Falen, A., Young S.K., Hammel, J.E., 2008. Linking fragipans, perched water tables, and catchment-scale hydro-logical processes. Catena, 73, 166–173. https://doi.org/10.1016/j.catena.2007.05.01110.1016/j.catena.2007.05.011
  39. McDowell, W.H., Liptzin, D., 2014. Linking soils and streams: Response of soil solution chemistry to simulated hurricane disturbance mirrors stream chemistry following a severe hurricane. Forest Ecol. Manag., 332, 56–63. https://doi.org/10.1016/j.foreco.2014.06.00110.1016/j.foreco.2014.06.001
  40. McGlynn, B.L., McDonnell, J.J., 2003. Quantyfying the relative contributions of riparian and hillslope zones to catchment runoff. Water Resour. Res., 39, 11. https://doi.org/10.1029/2003WR00209110.1029/2003WR002091
  41. Miller, F.P., Holowaychuk, N., Wilding, L.P., 1971. Canfield silt loam, a Fragiudalf: I. Macromorphological, physical, and chemical properties. Soil Sci. Soc. Am. J., 35, 319–324. https://doi.org/10.2136/sssaj1971.03615995003500020040x10.2136/sssaj1971.03615995003500020040x
  42. Mulder, J., Christophersen, N., Kopperud, K., Fjeldal, P.H., 1995. Water flow paths and the spatial distribution of soils as a key to understanding differences in streamwater chemistry between three catchments (Norway). Water Air Soil Poll., 81, 67–91. https://doi.org/10.1007/BF0047725710.1007/BF00477257
  43. Mulder, J., Pijpers, M., Christophersen, N., 1991. Water flow paths and the spatial distribution of soils and exchangeable cations in an acid rain-impacted and a pristine catchment in Norway. Water Resour. Res., 27, 11, 2919–2928. https://doi.org/10.1029/91WR0191110.1029/91WR01911
  44. Needelman, B.A, Gburek, W.J., Petersen, G.W., Sharpley, A.N., Kleinman, P.J.A., 2004. Surface runoff along two agricultural hillslopes with contrasting soils. Soil Sci. Soc. Am. J., 68, 914–923. https://doi.org/10.2136/sssaj2004.914010.2136/sssaj2004.9140
  45. Olewicz, Z.R., 1973. Tektonika jednostki bocheńskiej i brzegu jednostki śląskiej między Rabą a Uszwicą. Acta Geologica Polonica, 23, 4, 701–761.
  46. Outram, F.N., Lloyd, C.E.M., Jonczyk, J., Benskin, C.McW.H., Grant, F., Perks, M.T., Deasy C., Burke S.P., Collins A. L., Freer J., Haygarth P.M., Hiscock K.M., Johnes P.J., Lovett A.L., 2014. High-frequency monitoring of nitrogen and phosphorus response in three rural catchments to the end of the 2011–2012 drought in England. Hydrol. Earth Syst. Sci., 18, 3429–3448. https://doi.org/10.5194/hess-18-3429-201410.5194/hess-18-3429-2014
  47. Rockefeller, S.L., McDaniel, P.A., Falen, A.L., 2004. Perched water table responses to forest clearing in northern Idaho. Soil Sci. Soc. Am. J., 68, 168–174. https://doi.org/10.2136/sssaj2004.168010.2136/sssaj2004.1680
  48. Rothe, A., Huber, C., Kreutzer, K., Weis, W., 2002. Deposition and soil leaching in stands of Norway spruce and European Beech: Results from the Höglwald research in comparison with other European case studies. Plant Soil, 240, 33–45, https://doi.org/10.1023/A:101584690695610.1023/A:1015846906956
  49. Sandén, P., Karlsson, S., Düker, A., Ledin, A., Lundman, L., 1997. Variations in hydrochemistry, trace metal concentration and transport during a rain storm event in a small catchment. J. Geochem. Explor., 58, 2–3, 145–155. https://doi.org/10.1016/S0375-6742(96)00078-710.1016/S0375-6742(96)00078-7
  50. Saxton, K.E., Rawls, W.J., Romberger, J.S., Papendick, R.I., 1986. Estimating generalized soil water characteristics from texture. Transactions of the ASAE, 50, 1031–1035.10.2136/sssaj1986.03615995005000040039x
  51. Saxton, K.E., Rawls, W.J., 2006. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci. Soc. Am. J., 70, 1569–1578. https://doi.org/10.2136/sssaj2005.011710.2136/sssaj2005.0117
  52. Sidle, R.C., Tsuboyama, Y., Noguchi, S., Hosoda, I., Fujieda, M., Shimizu, T., 2000. Stormfow generation in steep forested headwaters: a linked hydrogeomorphic paradigm. Hydrol. Process., 14, 369–385. https://doi.org/10.1002/(SICI)1099-1085(20000228)14:3<369::AID-HYP943>3.0.CO;2-P10.1002/(SICI)1099-1085(20000228)14:3<369::AID-HYP943>3.0.CO;2-P
  53. Simonsson, M., Andersson, S., Andrist-Rangel, Y., Hillier, S., Mattson, L., Öborn, I., 2007. Potassium release and fixation as a function of fertilizer application rate and soil parent material. Geoderma, 140, 188–198. https://doi.org/10.1016/j.geoderma.2007.04.00210.1016/j.geoderma.2007.04.002
  54. Siwek, J., Siwek, J.P., Żelazny, M., 2013. Environmental and land use factors affecting phosphate hysteresis patterns of stream water during flood events (Carpathian Foothills, Poland). Hydrol. Process., 27, 25, 3674–3684. https://doi.org/10.1002/hyp.948410.1002/hyp.9484
  55. Siwek, J.P., Żelazny, M., Chełmicki, W., 2011. Influence of catchment characteristics and flood type on relationship between streamwater chemistry and streamflow: case study from Carpathian Foothills in Poland. Water Air Soil Poll., 214, 547–563. https://doi.org/10.1007/s11270-010-0445-610.1007/s11270-010-0445-6
  56. Siwek, J.P., Żelazny, M., Siwek, J., Szymański, W., 2017. Effect of land use, seasonality, and hydrometeorological conditions on the K+ concentration–discharge relationship during different types of floods in Carpathian Foothills Catchments (Poland). Water Air Soil Poll., 228, 445. https://doi.org/10.1007/s11270-017-3585-010.1007/s11270-017-3585-0
  57. Skiba, S., Drewnik, M., Klimek, M., Szmuc, R., 1998. Soil cover in the marginal zone of the Carpathian Foothills between the Raba and Uszwica rivers. Prace Geograficzne Instytutu Geografii UJ., 103, 125–135.
  58. Stachurski, A., Zimka, J.R., 2002. Atmospheric deposition and ionic interactions within a beech canopy in the Karkonosze Mountains. Environ. Pollut., 118, 75–87. https://doi.org/10.1016/S0269-7491(01)00238-X10.1016/S0269-7491(01)00238-X
  59. Stottlemyer, R., 2001. Processes regulating watershed chemical export during snowmelt, Fraser Experimental Forest, Colorado. J. Hydrol., 245, 1–4, 177–195. https://doi.org/10.1016/S0022-1694(01)00352-310.1016/S0022-1694(01)00352-3
  60. Sumner, M.E., Miller, W.P., 1996. Cation exchange capacity and exchange coefficients. In: Sparks D.L. (Ed.): Methods of Soil Analysis. Part 3. Chemical Methods. SSSA Book Series vol. 5. Soil Science Society of America, Madison, Wisconsin, pp. 1201–1229.10.2136/sssabookser5.3.c40
  61. Szymański, W., Skiba, M. Skiba, S., 2011. Fragipan horizon degradation and bleached tongues formation in Albeluvisols of the Carpathian Foothills, Poland. Geoderma, 167–168, 340–350. https://doi.org/10.1016/j.geoderma.2011.07.00710.1016/j.geoderma.2011.07.007
  62. Szymański, W., Skiba, M., Skiba, S., 2012. Origin of reversible cementation and brittleness of the fragipan horizon in Albeluvisols of the Carpathian Foothills, Poland. Catena, 99, 66–74. https://doi.org/10.1016/j.catena.2012.07.01210.1016/j.catena.2012.07.012
  63. Święchowicz, J., Michno, A., 2005. Obszar badań. In: Żelazny, M. (Ed.): Dynamika obiegu związków biogennych w wodach opadowych, powierzchniowych i podziemnych w zlewniach o różnym użytkowaniu na Pogórzu Wiśnickim. Instytut Geografii i Gospodarki Przestrzennej UJ, Kraków, pp. 63–100.
  64. Thomas, G.W., 1996. Soil pH and soil acidity. In: Sparks, D.L. (Ed.): Methods of Soil Analysis. Part 3. Chemical Methods. SSSA Book Series, vol. 5. Soil Science Society of America, Madison, Wisconsin, pp. 475–490.10.2136/sssabookser5.3.c16
  65. Tripler, C.E., Kaushal, S.S., Likens, G.E., Walter, M.T., 2006. Patterns in potassium dynamics in forest ecosystems. Ecol. Lett., 9, 451–466. https://doi.org/10.1111/j.1461-0248.2006.00891.x10.1111/j.1461-0248.2006.00891.x
  66. Ulery, A.L., Graham, R.C., Chadwick, O.A., Wood, H.B., 1995. Decade-scale changes of soil carbon, nitrogen and exchangeable cations under chaparral and pine. Geoderma, 65, 121–134. https://doi.org/10.1016/0016-7061(94)00034-810.1016/0016-7061(94)00034-8
  67. Walling, D.E., Foster, I.D.L., 1975. Variations in the natural chemical concentration of river water during flood flows, and the lag effect: some further comments. J. Hydrol., 26, 237–244. https://doi.org/10.1016/0022-1694(75)90005-010.1016/0022-1694(75)90005-0
  68. Wanielista, M., Kersten, R., Eaglin, R., 1997. Hydrology: Water Quantity and Quality Control. Wiley, New York, 592 p.
  69. Williams, M.R., Leydecker, A., Brown, A.D., Melack, J.M., 2001. Processes regulating the solute concentrations of snowmelt runoff in two subalpine catchments of the Sierra Nevada, California. Water Resour. Res., 37, 1993–2008. https://doi.org/10.1029/2000WR90036110.1029/2000WR900361
  70. Witty, J.E., Knox, E.G., 1989. Identification, role in soil taxonomy andworldwide distribution of fragipans. In: Smeck, N.E., Ciolkosz, E.J. (Eds.): Fragipans: their occurrence, classification and genesis, vol. 24. Soil Science Society of America. Madison, Wisconsin, pp. 1–9.10.2136/sssaspecpub24.c1
DOI: https://doi.org/10.2478/johh-2020-0037 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 49 - 64
Submitted on: May 7, 2020
Accepted on: Aug 7, 2020
Published on: Jan 26, 2021
Published by: Slovak Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Joanna P. Siwek, Wojciech Szymański, Janusz Siwek, Mirosław Żelazny, Mariusz Klimek, published by Slovak Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.