Have a personal or library account? Click to login
Development of a universal microinfiltrometer to estimate extent and persistence of soil water repellency as a function of capillary pressure and interface chemical composition Cover

Development of a universal microinfiltrometer to estimate extent and persistence of soil water repellency as a function of capillary pressure and interface chemical composition

Open Access
|Oct 2020

References

  1. Alagna, V., Iovino, M., Bagarello, V., Mataix-Solera, J., Lichner, L., 2019. Alternative analysis of transient infiltration experiment to estimate soil water repellency. Hydrol. Process., 33, 661–674.10.1002/hyp.13352
  2. Bachmann, J., Woche, S.K., Goebel, M-O., Kirkham, M.B., Horton, R., 2003. Extended methodology for determining wetting properties of porous media. Water Resour. Res., 39, 1353.10.1029/2003WR002143
  3. Bachmann, J., Deurer, M., Arye, G., 2007. Water-repellent soil: Development of a contact angle–dependent water-retention model. Vadose Zone J., 6, 436–445.10.2136/vzj2006.0060
  4. Bachmann, J., Söffker. S., Sepehrnia, N, Goebel, M.-O., Woche, S.K., 2020. The effect of temperature and wetting–drying cycles on soil wettability: Dynamic molecular restructuring processes at the solid–water–air interface. (In preparation).10.1111/ejss.13102
  5. Bauters, T.W.J., Steenhuis, T.S., DiCarlo, D.A., Nieber, J.L., Dekker, L.W. Ritsema, C.J., Parlange, J.-Y., Haverkamp, R., 2000. Physics of water repellent soils. J. Hydrol., 231–232, 233–243.10.1016/S0022-1694(00)00197-9
  6. Beatty, S.M., Smith, J.E., 2014. Infiltration of water and ethanol solutions in water repellent post wildfire soils. J. Hydrol., 514, 233–248.10.1016/j.jhydrol.2014.04.024
  7. Benito, E., Varela, E., Rodríguez-Alleres, M., 2019. Persistence of water repellency in coarse-textured soils under various types of forests in NW Spain. J. Hydrol. Hydromech., 67, 129–134.10.2478/johh-2018-0038
  8. Clothier, B.E., Vogeler, I., Magesan, G.N., 2000. The breakdown of water repellency and solute transport through a hydrophobic soil. J. Hydrol., 231–232, 255–264.10.1016/S0022-1694(00)00199-2
  9. Cosentino, D., Hallett, P.D., Michel, J.C., Chenu, C., 2010. Do different methods for measuring the hydrophobicity of soil aggregates give the same trends in soil amended with residue? Geoderma, 159, 221–227.10.1016/j.geoderma.2010.07.015
  10. De Rooij, GH., 2000. Modeling fingered flow of water in soils owing to wetting front instability: a review. J. Hydrol., 231–232, 277–294.10.1016/S0022-1694(00)00201-8
  11. Decagon, 2007. Minidisk Infiltrometer User's Manual. Version 6. Decagon Devices, Inc., Pullman.
  12. Dekker, L.W., Ritsema, C.J., 1994. How water moves in a water repellent sandy soil. I. Potential and actual water repellency. Water Resour. Res., 30, 2507–2517.10.1029/94WR00749
  13. Dekker, L.W., Ritsema, C.J., 2000. Wetting patterns and moisture variability in water repellent Dutch soils. J. Hydrol., 231–232, 148–164.10.1016/S0022-1694(00)00191-8
  14. Dekker, L.W, Doerr, S.H, Oostindie, K., Ziogas, A.K., Ritsema, C.J., 2001. Water repellency and critical soil water content in a dune sand. Soil Sci. Soc. Am. J., 65, 1667–1674.10.2136/sssaj2001.1667
  15. Dekker, L.W., Oostindie, K., Ritsema, C.J., 2005. Exponential increase of publications related to soil water repellency. Aust. J. Soil Res., 43, 403–441.10.1071/SR05007
  16. Deurer, M., Bachmann, J., 2007. Modeling water movement in heterogeneous water-repellent soil: 2. A conceptual numerical simulation. Vadose Zone J., 6, 446–457.10.2136/vzj2006.0061
  17. Diehl, D., Schneckenburger, T., Krüger, J., Goebel, M.-O., Woche, S.K., Schwarz, J., Shchegolikhina, A., Lang, F., Marschner, B., Thiele-Bruhn, S., Bachmann, J., Schaumann, G.E., 2014. Effect of multivalent cations, temperature and aging on soil organic matter interfacial properties. Environ. Chem., 11, 709–718.10.1071/EN14008
  18. Doerr, S.H., Shakesby, R.A., Walsh, R.P.D., 2000. Soil water repellency: its causes characteristics and hydrogeomorphological significance. Earth-Sci. Rev., 51, 33–65.10.1016/S0012-8252(00)00011-8
  19. Evonik, 2000. Stress Crack and Chemical Resistance. Darmstadt, Germany.
  20. Gaj, M., Lamparter, A., Woche, S.K., Bachmann, J., McDonnell, J.J., Stange, C.F., 2019. The role of matric potential, solid interfacial chemistry, and wettability on isotopic equilibrium fractionation. Vadose Zone J., 18. DOI: 10.2136/vzj2018.04.008310.2136/vzj2018.04.0083
  21. Goebel, M-O, Bachmann, J, Woche, S.K, Fischer, W.R, Horton, R., 2004: Water potential and aggregate size effects on contact angle and surface energy. Soil Sci. Soc. Am. J., 68, 383–393.10.2136/sssaj2004.3830
  22. Goebel, M.-O., Bachmann, J., Reichstein, M., Janssens I.A., Guggenberger, G., 2011. Soil water repellency and its implications for organic matter decomposition – is there a link to extreme climatic events? Glob. Change Biol., 17, 2640–2656.10.1111/j.1365-2486.2011.02414.x
  23. Goebel, M.O., Woche, S.K., Abraham, P.M., Schaumann, G.E., Bachmann, J., 2013. Water repellency enhances the deposition of negatively charged hydrophilic colloids in a water-saturated sand matrix. Colloids Surf. A, 431, 150–160.10.1016/j.colsurfa.2013.04.038
  24. Gordon, D.C., Hallett, P.D., 2014. An automated microinfiltrometer to measure small-scale soil water infiltration properties. J. Hydrol. Hydromech., 62, 248–252.10.2478/johh-2014-0023
  25. Hallett, P.D., 2007. An introduction to soil water repellency. In: Gaskin, R.E. (Ed.): Adjuvants for Agrochemicals. Hand Multimedia, Christchurch, New Zealand, 9 p.
  26. Hallett, P.D., Young, I.M., 1999. Changes to water repellence of soil aggregates caused by substrate-induced microbial activity. Eur. J. Soil Sci., 50, 35–40.10.1046/j.1365-2389.1999.00214.x
  27. Hallett, P.D., Baumgartl, T., Young, I.M., 2001. Subcritical water repellency of aggregates from a range of soil management practices. Soil Sci. Soc. Am. J., 65, 184–190.10.2136/sssaj2001.651184x
  28. Hallett, P.D., Gordon, D.C., Bengough, A.G., 2003. Plant influence on rhizosphere hydraulic properties: direct measurements using a miniaturized infiltrometer. New Phytol., 157, 597–603.10.1046/j.1469-8137.2003.00690.x
  29. Iovino, M., Pekárová, P., Hallett, P.D., Pekár, J., Lichner, Ľ., Mataix-Solera, J., Alagna, V., Walsh, R., Raffan, A., Schacht, K., Rodný, M., 2018. Extent and persistence of soil water repellency induced by pines in different geographic regions. J. Hydrol. Hydromech., 66, 360–368.10.2478/johh-2018-0024
  30. Johnson, M.S., Lehmann, J., Steenhuis, T.S., Oliveira, L.V., Fernandes, E.C.M., 2005. Spatial and temporal variability of soil water repellency of Amazonian pastures. Aust. J. Soil Res., 43, 319–326.10.1071/SR04097
  31. Jonas, A.M., Cai. R., Vermeyen, R., Nysten, B., Vanneste, M., Smet, D.D., Glinel, K., 2020. How roughness controls the water repellency of woven fabrics. Mater. Des., 187, 108389.10.1016/j.matdes.2019.108389
  32. Leeds-Harrison, P.B., Youngs, E.G., 1997. Estimating the hydraulic conductivity of aggregates conditioned by different tillage treatments from sorption measurements. Soil Till. Res., 41, 141–147.10.1016/S0167-1987(96)01079-3
  33. Leeds-Harrison, P.B., Youngs, E.G., Uddin, B., 1994. A device for determining the sorptivity of soil aggregates. Eur. J. Soil Sci., 45, 269–272.10.1111/j.1365-2389.1994.tb00509.x
  34. Leelamanie, D.A.L., Karube, J., Yoshida, A., 2008. Characterizing water repellency indices: Contact angle and water drop penetration time of hydrophobized sand. J. Soil Sci. Plant Nutr., 54, 179–187.10.1111/j.1747-0765.2007.00232.x
  35. Letey, J., Carrillo, M.L.K., Pang, X.P., 2000. Approaches to characterize the degree of water repellency. J. Hydrol., 231–232, 61–65.10.1016/S0022-1694(00)00183-9
  36. Li, X., Chang, S.S.X., Salifu, K.F., 2014. Soil texture and layering effects on water and salt dynamics in the presence of a water table: a review. Environ. Rev., 22, 41–50.10.1139/er-2013-0035
  37. Lichner, L., Hallett, P.D., Drongova, Z., Czachor, H., Kovacik, L., Mataix-Solera, J., Homolak, M., 2013. Algae influence the hydrophysical parameters of a sandy soil. Catena, 108, 58–68.10.1016/j.catena.2012.02.016
  38. Lichner, L., Felde, V.J.M.N.L., Büdel, B., Leue, M., Gerke, H.H., Ehlerbrock, R.H., Kollár, J., Rodný, M., Šurda, P., Fodor, N., Sándor, R., 2018. Effect of vegetation and its succession on water repellency in sandy soils. Ecohydrology, 11, e1991.10.1002/eco.1991
  39. Mao, J., Nierop, K.G.J., Dekker, S.C., Dekker, L.W., Chen, B., 2019. Understanding the mechanisms of soil water repellency from nanoscale to ecosystem scale: a review. J. Soils Sediments, 19, 171–185.10.1007/s11368-018-2195-9
  40. Muehl, G.J.H., Ruehlmann, J., Goebel, M.-O., Bachmann, J., 2012. Application of confocal laser scanning microscopy (CLSM) to visualize the effect of porous media wettability on unsaturated pore water configuration. J. Soils Sediments, 2, 75–85.10.1007/s11368-011-0395-7
  41. Orfánus, T., Dlapa, P., Fodor, N., Rajkai, K., Sándor, R., Nováková, K., 2014. How severe and subcritical water repellency determines the seasonal infiltration in natural and cultivated sandy soils. Soil Till. Res., 135, 49–59.10.1016/j.still.2013.09.005
  42. Philip, J.R., 1957. The theory of infiltration: 1. The infiltration equation and its solution. Soil Sci., 83, 345–357.10.1097/00010694-195705000-00002
  43. R Core Team, 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
  44. Rodríguez-Alleres, M., Benito, E., 2011. Spatial and temporal variability of surface water repellency in sandy loam soils of NW Spain under Pinus pinaster and Eucalyptus globulus plantations. Hydrol Process., 25, 3649–3658.10.1002/hyp.8091
  45. Ruspini, L.C., Farokhpoor, R., Øren, P.E., 2017. Pore-scale modeling of capillary trapping in water-wet porous media: A new cooperative pore-body filling model. Adv. Water Resour., 108, 1–14.10.1016/j.advwatres.2017.07.008
  46. Sepehrnia, N., Hajabbasi, M.A., Afyuni, M., Lichner, L., 2016. Extent and persistence of water repellency in two Iranian soils. Biologia, 71, 1137–1143.10.1515/biolog-2016-0135
  47. Sepehrnia, N., Hajabbasi, M.A., Afyuni, M., Lichner, L., 2017. Soil water repellency changes with depth and relationship to physical properties within wettable and repellent soil profiles. J. Hydrol. Hydromech., 65, 99–104.10.1515/johh-2016-0055
  48. Thieme, L., Graeber, D., Kaupenjohann, M., Siemens, J., 2016. Fast-freezing with liquid nitrogen preserves bulk dissolved organic matter concentrations, but not its composition. Biogeosciences, 13, 4697–4705.10.5194/bg-13-4697-2016
  49. Tillman, R.W., Scotter, D.R., Wallis, M.G., Clothier, B.E., 1989. Water-repellency and its measurement by using intrinsic sorptivity. Aust. J. Soil Res., 27, 637–644.10.1071/SR9890637
  50. Tschapek, M., 1984. Criteria for determining the hydrophilicity hydrophobicity of Soils. J. Plant Nutr. Soil Sci., 137–149.10.1002/jpln.19841470202
  51. Wang, Z., Wu, Q.J., Wu, L., Ritsema, C.J., Dekker, L.W., Feyen, J., 2000. Effects of soil water repellency on infiltration rate and flow instability. J. Hydrol., 231–232, 265–276.10.1016/S0022-1694(00)00200-6
  52. Wenzel, R.N., 1936. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem., 28, 988–994.10.1021/ie50320a024
  53. Woche, S.K., Goebel, M.-O., Mikutta, R., Schurig, C., Kaestner, M., Guggenberger, G., Bachmann, J., 2017. Soil wettability can be explained by the chemical composition of particle interfaces - An XPS study. Sci. Rep., 7, 42877.10.1038/srep42877531440628211469
  54. Zhang, R., 1997. Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Sci. Soc. Am. J., 61, 1024–1030.10.2136/sssaj1997.03615995006100040005x
DOI: https://doi.org/10.2478/johh-2020-0035 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 392 - 403
Submitted on: Mar 24, 2020
Accepted on: Aug 20, 2020
Published on: Oct 20, 2020
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Nasrollah Sepehrnia, Susanne K. Woche, Marc-O. Goebel, Jörg Bachmann, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.