Have a personal or library account? Click to login
An empirical model for describing the influence of water content and concentration of sulfamethoxazole (antibiotic) in soil on the total net CO2 efflux Cover

An empirical model for describing the influence of water content and concentration of sulfamethoxazole (antibiotic) in soil on the total net CO2 efflux

Open Access
|Oct 2020

References

  1. ADC BioScientific, 2011. User manual LCi-SD Leaf Chamber/Soil Respiration Analysis System. Hertfortshire.
  2. Al-Khazrajy, O.S.A., Bergstrom, E., Boxall, A.B.A., 2018. Factors affecting the dissipation of pharmaceuticals in freshwater sediments. Environ. Toxicol. Chem., 37, 3, 829–838.10.1002/etc.4015
  3. Anderson, T.H., Domsch, K.H., 1985. Determination of eco-physiological maintenance carbon requirements of soil microorganisms in a dormant state. Biol. Fert. Soils., 1, 81–89.10.1007/BF00255134
  4. Bahn, M., Reichstein, M., Davidson, E.A., Grünzweig, J., Jung, M., Carbone, M. S., Epron, D., Misson, L., Nouvellon, Y., Roupsard, O., Savage, K., Trumbore, S. E., Gimeno, C., Curiel Yuste, J., Tang, J., Vargas, R., and Janssens, I. A., 2010. Soil respiration at mean annual temperature predicts annual total across vegetation types and biomes. Biogeosciences, 7, 2147–2157.10.5194/bg-7-2147-2010
  5. Balogh, J., Pintér, K., Fóti, S., Cserhalmi, D., Papp, M., Nagy, Z., 2011. Dependence of soil respiration on soil moisture, clay content, soil organic matter and CO2 uptake in dry grasslands. Soil Biol. Biochem., 43, 1006–1013.10.1016/j.soilbio.2011.01.017
  6. Biel-Maeso, M., González-González, C., Lara-Martín, P.A., Corada-Fernández, C., 2019. Sorption and degradation of contaminants of emerging concern in soils under aerobic and anaerobic conditions. Sci. Total Environ., 666, 662–671.10.1016/j.scitotenv.2019.02.279
  7. Birch, H., 1958. The effect of soil drying on humus decomposition and nitrogen availability. Plant Soil, 10, 9–31.10.1007/BF01343734
  8. Buchmann, N., 2000. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biol. Biochem., 32, 1625–1635.10.1016/S0038-0717(00)00077-8
  9. Caracciolo, A.B., Topp, E., Grenni, P., 2015. Pharmaceuticals in the environment: biodegradation and effects on natural microbial communities. A review. J. Pharmaceut. Biomed., 106, 25–36.10.1016/j.jpba.2014.11.04025534003
  10. Charuaud, L., Jardem E., Jaffrezic, A., Thomas, M.F., Le Bot, B., 2019. Veterinary pharmaceutical residues from natural water to tap water: Sales, occurrence and fate. J. Hazard. Mater., 361, 169–186.10.1016/j.jhazmat.2018.08.07530179788
  11. Chen, J., Xie, S., 2018. Overview of sulfonamide biodedegradation and relevant pathways and microorganisms. Sci. Total Environ., 640–641, 1465–1477.10.1016/j.scitotenv.2018.06.01630021313
  12. Davidson, E.A., Janssens, I., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165–173.10.1038/nature0451416525463
  13. Dane, J.H., Topp, C.T. (Eds), 2002. Methods of Soil Analysis. Part 4 – Physical Methods. Soil Science Society of America, Inc. Madison, USA.10.2136/sssabookser5.4
  14. Davidson, E.A., Belk, E., Boone, R., 1998. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob. Change Biol., 4, 217–227.10.1046/j.1365-2486.1998.00128.x
  15. Fér, M., Kodešová, R., Klement, A., 2014. CO2 emission from erosion affected soils. In: 14th International Multidisciplinary Scientific Geoconference and EXPO, SGEM 2014. Albena. Bulgaria; 17 June 2014 through 26 June 2014, 2, 3, 37–44.
  16. Fér, M., Kodešová, R., Nikodem, A., Jelenová, K., Klement, A., 2018a. Influence of soil–water content on CO2 efflux within the elevation transect heavily impacted by erosion. Ecohydrology, 2018; e1989.10.1002/eco.1989
  17. Fér, M., Kodešová, R., Golovko, O., Schmidtová, Z., Klement, A., Kočárek, M., Grabic, R., 2018b. Sorption of atenolol, sulfamethoxazole and carbamazepine onto soil aggregates from the illuvial horizon of the Haplic Luvisol on loess. Soil Water Res., 13, 3, 177–183.10.17221/82/2018-SWR
  18. Flint A.L., Flint L.E., 2002. Particle density, in. J.H. Dane, G.C. Topp (Eds.), Methods of Soil Analysis. Part 4. Physical Methods, Soil Science Society of America, Inc., Madison, USA, pp. 229–240.10.2136/sssabookser5.4.c10
  19. Frková, Z., Vystavna, Y., Koubová, A., Kotas, P., Grabicová, K., Grabic, R., Kodešová, R., Chroňáková, A., 2020. Microbial responses to selected pharmaceuticals 1 in agricultural soils: Microcosm study on the roles of soil, treatment and time. Soil Biol. Biochem., 149, 107924.10.1016/j.soilbio.2020.107924
  20. Gee, G.W., Or, D., 2002. Particle-size analysis, in. J.H. Dane, G.C. Topp (Eds.), Methods of Soil Analysis. Part 4. Physical Methods, Soil Science Society of America, Inc., Madison, USA, pp. 255–294.
  21. Golovko, O., Koba, O., Kodešová, R., Fedorova, G., Kumar, V., Grabic, R., 2016. Development of fast and robust multiresidual LC-MS/MS method for determination of pharmaceuticals in soils. Environ. Sci. Pollut. R., 23, 14, 14068–14077.10.1007/s11356-016-6487-627044290
  22. Grenni, P., Ancona, V., Caracciolo, A.B., 2018. Ecological effects of antibiotics on natural ecosystems: A review. Microch. J., 136, 25–39.10.1016/j.microc.2017.02.006
  23. Hurtado, C., Montano-Chávez, Y.N., Domínguez, C., Bayona, J.M., 2017. Degradation of emerging organic contaminants in an agricultural soil: Decoupling biotic and abiotic processes. Water Air Soil Poll., 228, 243.10.1007/s11270-017-3402-9
  24. Iovieno, P., Bååth, E., 2008. Effect of drying and rewetting on bacterial rates in soil. FEMS Microbiol. Ecol., 65, 400–407.10.1111/j.1574-6941.2008.00524.x18547324
  25. ISO 10390, 2005. Soil quality-determination of pH. International Organization for Standardization, Geneva.
  26. Ivanová, L., Mackuľak, T., Grabic, R., Golovko, O., Koba, O., Vojs Staňová, A., Szabová, P., Grenčíková, A., Bodík, I., 2018. Pharmaceuticals and illicit drugs – a new threat to the application of sewage sludge in agriculture. Sci. Total Environ., 634, 606–615.10.1016/j.scitotenv.2018.04.00129635203
  27. Jiang, J., Guo, S., Zhang, Y., Liu, Q., Wang, R., Wang, Z., Li, N., Li, R., 2015. Changes in temperature sensitivity of soil respiration in the phase of a three-year crop rotation system. Soil Till. Res., 150, 139–146.10.1016/j.still.2015.02.002
  28. Klement, A., Kodešová, R., Bauerová, M., Golovko, O., Kočárek, M., Fér, M., Koba, O., Nikodem, A., Grabic, R., 2018. Sorption of citalopram, irbesartan and fexofenadine in soils: estimation of sorption coefficients from soil properties. Chemosphere, 195, 615–623.10.1016/j.chemosphere.2017.12.09829287270
  29. Klement, A., Kodešová, R., Golovko, O., Fér, M., Nikodem, A., Kočárek, M., Grabic, R., 2020. Uptake, translocation and transformation of three pharmaceuticals in green pea plants. J. Hydrol. Hydromech., 68, 1, 1–11.10.2478/johh-2020-0001
  30. Kočárek, M., Kodešová, R., Vondráčková, L., Golovko, O., Fér, M., Klement, A., Nikodem, A., Jakšík, O., Grabic, R., 2016. Simultaneous sorption of four ionizable pharmaceuticals in different horizons of three soil types. Environ. Pollut., 218, 563–573.10.1016/j.envpol.2016.07.03927460901
  31. Kodešová, R., Grabic, R., Kočárek, M., Klement, A., Golovko, O., Fér, M., Nikodem, A., Jakšík, O., 2015. Pharmaceuticals' sorptions relative to properties of thirteen different soils. Sci. Total Environ., 511, 435–443.10.1016/j.scitotenv.2014.12.08825569579
  32. Kodešová, R., Kočárek, M., Klement, A., Golovko, O., Koba, O., Fér, M., Nikodem, A., Vondráčková, L., Jakšík, O., Grabic, R., 2016. An analysis of the dissipation of pharmaceuticals under thirteen different soil conditions. Sci. Total Environ., 544, 369–381.10.1016/j.scitotenv.2015.11.08526657382
  33. Kodešová, R., Klement, A., Golovko, O., Fér, M., Nikodem, A., Kočárek, M., Grabic, R., 2019a. Root uptake of atenolol, sulfamethoxazole and carbamazepine, and their transformation in three soils and four plants. Environ. Sci. Pollut. Res., 26, 10, 9876–9891.10.1007/s11356-019-04333-930734257
  34. Kodešová, R., Klement, A., Golovko, O., Fér, M., Kočárek, M., Nikodem, A., Grabic, R., 2019b. Soil influences on uptake and transfer of pharmaceuticals from sewage sludge amended soils to spinach. J. Environ. Manage., 250, 109407.10.1016/j.jenvman.2019.10940731472377
  35. Kodešová, R., Chroňáková, A., Grabicová, K., Kočárek, M., Schmidtová, Z., Frková, Z., Vojs-Staňová, A., Nikodem, A., Klement, A., Fér, M., Grabic, R., 2020. How microbial community composition, sorption and simultaneous application of six pharmaceuticals affect their dissipation in soils. Sci. Total Environ., 746, 141134.10.1016/j.scitotenv.2020.14113432768780
  36. Kuzyakov, Y., 2006. Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol. Biochem., 38, 425–448.10.1016/j.soilbio.2005.08.020
  37. Meisner, A., Bååth, E., Rousk, J., 2013. Microbial growth responses upon rewetting soil dried for four days or one year. Soil Biol. Biochem., 66, 188–192.10.1016/j.soilbio.2013.07.014
  38. Meisner, A., Rousk, J., Bååth, E., 2015. Prolonged drought changes the bacterial growth response to rewetting. Soil Biol. Biochem., 88, 314–322.10.1016/j.soilbio.2015.06.002
  39. Molaei, A., Lakzian, A., Haghnia, G., Astaraei, A., Rasouli-Sadaghiani, M., Teresa Ceccherini M., Datta, R., 2017. Assessment of some cultural experimental methods to study the effects of antibiotics on microbial activities in a soil: An incubation study. PLoS ONE, 12, 7, e0180663.10.1371/journal.pone.0180663550036728683144
  40. Moyano, F.E., Vasilyeva, N., Bouckaert, L., Cook, F., Craine, J., Curiel Yuste, J., Don, D., Epron, D., Formanek, P., Franzluebbers, A., Ilstedt, U., Kätterer, K., Orchard, V., Reichstein, M., Rey, A., Ruamps, L., Subke, J.-A., Thomsen, I.K., Chenu, C., 2012. The moisture response of soil heterotrophic respiration: interaction with soil properties. Biogeosciences, 9, 1173–1182.10.5194/bg-9-1173-2012
  41. Moyano, F.E., Vasilyeva, N., Lorenzo, M., 2018. Diffusion limitations and Michaelis–Menten kinetics as drivers of combined temperature and moisture effects on carbon fluxes of mineral soils. Biogeosciences, 15, 5031–5045.10.5194/bg-15-5031-2018
  42. OECD, 2002. Test No. 307: aerobic and anaerobic transformation in soil. In: OECD Guidelines for the Testing of Chemicals, Section 3: Degradation and Accumulation. OECD, ISBN: 9789264070509, 17 p.
  43. Pavlů, L., Kodešová, R., Fér, M., Nikodem, A., Němec, F., Prokeš, R., 2021. The impact of various mulch types on soil properties controlling water regime of the Haplic Fluvisol. Soil Till. Res., 205, 104748.10.1016/j.still.2020.104748
  44. R Development Core Team, 2015. R. a language and environment for statistical computing. R foundation for Statistical Computing. (http://www.R-project.org).
  45. Rhoades, J.D., 1996. Salinity, electrical conductivity and total dissolved solids. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E. (Eds): Methods of Soil Analysis. Part 3. Chemical Methods. Soil Science Society of America, Inc., Madison, pp. 417–435.
  46. Schaffer, M., Licha, T., 2015. A framework for assessing the retardation of organic molecules in groundwater: implications of the species distribution for the sorption influenced transport. Sci. Total Environ., 524–525, 187–194.10.1016/j.scitotenv.2015.04.00625897727
  47. Schaufler, G., Kitzler, B., Schindlbacher, A., Skiba, U., Sutton, M.A., Zechmeister-Boltenstern, S., 2010. Greenhouse gas emissions from European soils under different land use. effects of soil moisture and temperature. Eur. J. Soil Sci., 61, 683–696.10.1111/j.1365-2389.2010.01277.x
  48. Schmidtová, Z., Kodešová, R., Grabicová, K., Kočárek, M., Fér, M., Švecová, H., Klement, A., Nikodem, A., Grabic, R., 2020. Competitive and synergic sorption of carbamazepine, citalopram, clindamycin, fexofenadine, irbesartan and sulfa-methoxazole in seven soils. J. Contam. Hydrol., 234, 103680.10.1016/j.jconhyd.2020.10368032682147
  49. Shen, G., Zhang, Y., Hu, S., Zhang, H., Yuan, Z., Zhang, W., 2018. Adsorption and degradation of sulfadiazine and sulfamethoxazole in an agricultural soil system under an anaerobic condition: Kinetics and environmental risks. Chemosphere, 194, 266–274.10.1016/j.chemosphere.2017.11.17529216546
  50. Skjemstad, J., Baldock, J.A., 2008. Total and organic carbon. In: Carter, M. (Ed): Soil Sampling and Methods of Analysis, (2nd Edition), Boca Raton, FL, USA. Soil Science Society of Canada, CRC Press, pp. 225–238.10.1201/9781420005271.ch21
  51. Srinivasan, P., Sarmah, A.K., 2014. Dissipation of sulfamethoxazole in pasture soils as affected by soil and environmental factors. Sci. Total Environ., 479–480, 284–291.10.1016/j.scitotenv.2014.02.01424565861
  52. Thelusmond, J.R., Strathmann, T.J., Cupples, A.M., 2019. Carbamazepine, triclocarban and triclosan biodegradation and the phylotypes and functional genes associated with xenobiotic degradation in four agricultural soils. Sci. Total Environ., 657, 1138–1149.10.1016/j.scitotenv.2018.12.14530677881
  53. WRB, 2015. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.
  54. Xu, L., Baldocchi, D.D., Tang, J., 2004. How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to temperature. Global Biogeoch. Cy., 18, GB4002.10.1029/2004GB002281
  55. Yuste, J.C., Baldocchi, D.D., Gershenson, A., Goldstein, A., 2007. Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Glob. Change Biol., 13, 1–18.10.1111/j.1365-2486.2007.01415.x
  56. Verlicchi, P., Zambello, E., 2015. Pharmaceuticals and personal care products in untreated and treated sewage sludge: occurrence and environmental risk in the case of application on soil - a critical review. Sci. Total Environ., 538, 750–767.10.1016/j.scitotenv.2015.08.10826327643
  57. Zhang, Y., Hu, S., Zhang, H., Shen, G., Yuan, Z., Zhang, W., 2017. Degradation kinetics and mechanism of sulfadiazine and sulfamethoxazole in an agricultural soil system with manure application. Sci. Total Environ., 607–608, 1348–1356.10.1016/j.scitotenv.2017.07.08328738510
  58. Zhi, D., Yang, D., Zheng, Y., Yang, Y., He, Y., Luo, L., Zhou, Y., 2019. Current progress in the adsorption, transport and biodegradation of antibiotics in soil. J. Environ. Manage., 251, 109598.10.1016/j.jenvman.2019.10959831563054
  59. Zhong, Y., Yan, W., Zong, Y., Shangguan, Z., 2016. Biotic and abiotic controls on the diel and seasonal variations in soil respiration and its components in a wheat field under long-term nitrogen fertilization. Field Crop. Res., 199, 1–9.10.1016/j.fcr.2016.09.014
DOI: https://doi.org/10.2478/johh-2020-0031 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 351 - 358
Submitted on: Jun 22, 2020
Accepted on: Jul 20, 2020
Published on: Oct 20, 2020
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Miroslav Fér, Radka Kodešová, Barbora Kalkušová, Aleš Klement, Antonín Nikodem, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.