Have a personal or library account? Click to login
Water repellency in eucalyptus and pine plantation forest soils and its relation to groundwater levels estimated with multi-temporal modeling Cover

Water repellency in eucalyptus and pine plantation forest soils and its relation to groundwater levels estimated with multi-temporal modeling

Open Access
|Oct 2020

References

  1. Adane, Z., Nasta, P., Gates., J.B., 2017. Links between soil hydrophobicity and groundwater recharge under plantations in a sandy grassland setting, Nebraska Sand Hills, USA. Forest Science, 63, 4, 388–401. https://doi.org/10.5849/FS-2016-13710.5849/FS-2016-137
  2. Alagna, V., Iovino, M., Bagarello, V., Mataix-Solera, J., Lichner, Ľ., 2017. Application of minidisk infiltrometer to estimate water repellency in Mediterranean pine forest soils. Journal of Hydrology and Hydromechanics, 65, 3, 254–263. https://doi.org/10.1515/johh-2017-000910.1515/johh-2017-0009
  3. Bachmann, J., Ellies, A., Hartge, K.H., 2000. Development and application of a new sessile drop contact angle method to assess soil water repellency. Journal of Hydrology, 231, 66–75. https://doi.org/10.1016/S0022-1694(00)00184-010.1016/S0022-1694(00)00184-0
  4. Badía-Villas, D., González-Pérez, J.A., Aznar, J.M., Arjona-Gracia, B., Martí-Dalmau, C., 2014. Changes in water repellency, aggregation and organic matter of a mollic horizon burned in laboratory: soil depth affected by fire. Geoderma, 213, 400–407. https://doi.org/10.1016/j.geoderma.2013.08.03810.1016/j.geoderma.2013.08.038
  5. Bauters, T.W., Steenhuis, T.S., Parlange, J.Y., DiCarlo, D.A., 1998. Preferential flow in water-repellent sands. Soil Science Society of America Journal, 62, 5, 1185–1190. https://doi.org/10.2136/sssaj1998.03615995006200050005x10.2136/sssaj1998.03615995006200050005x
  6. Bauters, T.W.J., Steenhuis, T.S., DiCarlo, D.A., Nieber, J.L., Dekker, L.W., Ritsema, C.J., Parlange, J.Y., Haverkamp, R., 2000. Physics of water repellent soils. Journal of Hydrology, 231, 233–243. https://doi.org/10.1016/S0022-1694(00)00197-910.1016/S0022-1694(00)00197-9
  7. Benito, E., Varela, E., Rodríguez-Alleres, M., 2019. Persistence of water repellency in coarse-textured soils under various types of forests in NW Spain. Journal of Hydrology and Hydromechanics, 67, 2, 129–134. https://doi.org/10.2478/johh-2018-003810.2478/johh-2018-0038
  8. Blake, G.R., Hartge, K.H., 1986a. Bulk density. In: Klute, A. (Ed.): Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods. 2nd Ed. Soil Science Society of America: Madison, WI., pp. 363–375. https://doi.org/10.2136/sssabookser5.1.2ed.c1310.2136/sssabookser5.1.2ed.c13
  9. Blake, G.R., Hartge, K.H., 1986b. Particle Density. In: Klute, A. (Ed.): Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods. 2nd Ed. Soil Science Society of America: Madison, WI., pp. 377–382. https://doi.org/10.2136/sssabookser5.1.2ed.c1410.2136/sssabookser5.1.2ed.c14
  10. Bouyoucos, G.J., 1962. Hydrometer method improved for making particle size analyses of soils 1. Agronomy Journal, 54, 5, 464–465. https://doi.org/10.2134/agronj1962.00021962005400050028x10.2134/agronj1962.00021962005400050028x
  11. Brunner, P., Franssen, H.J.H., Kgotlhang, L., Bauer-Gottwein, P., Kinzelbach, W., 2007. How can remote sensing contribute in groundwater modeling? Hydrogeology journal, 15, 1, 5–18. https://doi.org/10.1007/s10040-006-0127-z10.1007/s10040-006-0127-z
  12. Contreras, S., Cantón, Y., Solé-Benet, A., 2008. Sieving crusts and macrofaunal activity control soil water repellency in semiarid environments: evidences from SE Spain. Geoderma, 145, 3–4, 252–258. https://doi.org/10.1016/j.geoderma.2008.03.01910.1016/j.geoderma.2008.03.019
  13. Doerr, S.H., Shakesby, R.A., Walsh, R.P., 1996. Soil hydrophobicity variations with depth and particle size fraction in burned and unburned Eucalyptus globulus and Pinus pinaster forest terrain in the Agueda Basin, Portugal. Catena, 27, 1, 25–47. https://doi.org/10.1016/0341-8162(96)00007-010.1016/0341-8162(96)00007-0
  14. Doerr, S.H., Thomas, A.D., 2000. The role of soil moisture in controlling water repellency: new evidence from forest soils in Portugal. Journal of Hydrology, 231, 134–147. https://doi.org/10.1016/S0022-1694(00)00190-610.1016/S0022-1694(00)00190-6
  15. Doerr, S.H., Woods, S.W., Martin, D.A., Casimiro, M., 2009. ‘Natural background’ soil water repellency in conifer forests of the north-western USA: its prediction and relationship to wildfire occurrence. Journal of Hydrology, 371, 1–4, 12–21. https://doi.org/10.1016/j.jhydrol.2009.03.01110.1016/j.jhydrol.2009.03.011
  16. ESRI, 2017. ArcGIS-Desktop ArcMap: Release 10.4.1. Red-lands, CA: Environmental Systems Research Institute.
  17. Fér, M., Kodešová, R., 2012. Estimating hydraulic conductivities of the soil aggregates and their clay-organic coatings using numerical inversion of capillary rise data. Journal of Hydrology, 468, 229–240. https://doi.org/10.1016/j.jhydrol.2012.08.03710.1016/j.jhydrol.2012.08.037
  18. Fér, M., Leue, M., Kodešová, R., Gerke, H.H., Ellerbrock, R.H., 2016. Droplet infiltration dynamics and soil wettability related to soil organic matter of soil aggregate coatings and interiors. Journal of Hydrology and Hydromechanics, 64, 2, 111–120. https://doi.org/10.1515/johh-2016-002110.1515/johh-2016-0021
  19. Flores-Mangual, M.L., Lowery, B., Bockheim, J.G., Pagliari, P.H., Scharenbroch, B., 2013. Hydrophobicity of Sparta sand under different vegetation types in the Lower Wisconsin River Valley. Soil Science Society of America Journal, 77, 5, 1506–1516. https://doi.org/10.2136/sssaj2012.034310.2136/sssaj2012.0343
  20. Gerke, H.H., Köhne, J.M., 2002. Estimating hydraulic properties of soil aggregate skins from sorptivity and water retention. Soil Science Society of America Journal, 66(1), 26-36. https://doi.org/10.2136/sssaj2002.260010.2136/sssaj2002.2600
  21. Giordano, M., 2009. Global groundwater? Issues and solutions. Annual Review of Environment and Resources, 34, 153–178. https://doi.org/10.1146/annurev.environ.030308.10025110.1146/annurev.environ.030308.100251
  22. Imeson, A.C., Verstraten, J.M., Van Mulligen, E.J., Sevink, J., 1992. The effects of fire and water repellency on infiltration and runoff under Mediterranean type forest. Catena, 19(3-4), 345–361. https://doi.org/10.1016/0341-8162(92)90008-Y10.1016/0341-8162(92)90008-Y
  23. Iovino, M., Pekárová, P., Hallett, P.D., Pekár, J., Lichner, Ľ., Mataix-Solera, J., Alagna, V., Walsh, R., Raffan, A., Schacht, K., Rodný, M., 2018. Extent and persistence of soil water repellency induced by pines in different geographic regions. Journal of Hydrology and Hydromechanics, 66, 4, 360–368. https://doi.org/10.2478/johh-2018-002410.2478/johh-2018-0024
  24. Kajiura, M., Etori, Y., Tange, T., 2012. Water condition control of in situ soil water repellency: an observational study from a hillslope in a Japanese humid-temperate forest. Hydrological Processes, 26, 20, 3070–3078. https://doi.org/10.1002/hyp.831010.1002/hyp.8310
  25. Kobayashi, M., Shimizu, T., 2007. Soil water repellency in a Japanese cypress plantation restricts increases in soil water storage during rainfall events. Hydrological Processes: An International Journal, 21, 17, 2356–2364. https://doi.org/10.1002/hyp.675410.1002/hyp.6754
  26. Lee, C., Yang, H.J., Yun, T.S., Choi, Y., Yang, S., 2015. Water-entry pressure and friction angle in an artificially synthesized water-repellent silty soil. Vadose Zone Journal, 14, 4. https://doi.org/10.2136/vzj2014.08.010610.2136/vzj2014.08.0106
  27. Leelamanie, D.A.L., 2016. Occurrence and distribution of water repellency in size fractionated coastal dune sand in Sri Lanka under Casuarina shelterbelt. Catena, 142, 206–212. https://doi.org/10.1016/j.catena.2016.03.02610.1016/j.catena.2016.03.026
  28. Leelamanie, D.A.L., Karube, J., Yoshida, A., 2008. Characterizing water repellency indices: Contact angle and water drop penetration time of hydrophobized sand. Soil Science & Plant Nutrition, 54, 2, 179–187. https://doi.org/10.1111/j.1747-0765.2007.00232.x10.1111/j.1747-0765.2007.00232.x
  29. Leelamanie, D.A.L., Liyanage, T.D.P., Piyaruwan, H.I.G.S., 2016. Occurrence and Distribution of Water Repellency in soils under Exotic Plantation Forests in Sri Lanka. 13th Academic Sessions, University of Ruhuna, March 02, 2016. ISSN: 2362-0412
  30. Leelamanie, D.A.L., Nishiwaki, J., 2019. Water repellency in Japanese coniferous forest soils as affected by drying temperature and moisture. Biologia, 74, 2, 127–137. https://doi.org/10.2478/s11756-018-0157-810.2478/s11756-018-0157-8
  31. Letey, J., 2001. Causes and consequences of fire-induced soil water repellency. Hydrological Processes 15, 15, 2867–2875. https://doi.org/10.1002/hyp.37810.1002/hyp.378
  32. Letey, J., Carrillo, M.L.K., Pang, X.P., 2000. Approaches to characterize the degree of water repellency. Journal of Hydrology, 231, 61–65. https://doi.org/10.1016/S00221694(00)00183-9
  33. Lichner, L.U., Hallett, P.D., Feeney, D.S., Ďugová, O., Šír, M., Tesař, M., 2007. Field measurement of soil water repellency and its impact on water flow under different vegetation. Biologia, 62, 5, 537–541. https://doi.org/10.2478/s11756-007-0106-410.2478/s11756-007-0106-4
  34. Lichner, Ľ., Capuliak, J., Zhukova, N., Holko, L., Czachor, H., Kollár, J., 2013. Pines influence hydrophysical parameters and water flow in a sandy soil. Biologia, 68, 6, 1104–1108. https://doi.org/10.2478/s11756-013-0254-710.2478/s11756-013-0254-7
  35. Liyanage, T.D.P., Leelamanie, D.A.L., 2016. Influence of organic manure amendments on water repellency, water entry value, and water retention of soil samples from a tropical Ultisol. Journal of Hydrology and Hydromechanics, 64, 2, 160-166. https://doi:10.1515/johh-2016-002510.1515/johh-2016-0025
  36. McKissock, I., Gilkes, R.J., Harper, R.J., Carter, D.J., 1998. Relationships of water repellency to soil properties for different spatial scales of study. Soil Research. 36, 3, 495–508. https://doi.org/10.1071/S97071.10.1071/S97071
  37. National Atlas of Sri Lanka, 2007. Second Edition, Survey Department of Sri Lanka. Colombo, Sri Lanka.
  38. Pan, S.B., Wang, Z., Su, Q., Sun, T., Zhang, Y., 2008. Groundwater level monitoring model using multi-temporal images in arid region of northwest China. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 745–750.
  39. Rao, N.S., Chakradhar, G.K.J., Srinivas, V., 2001. Identification of groundwater potential zones using remote sensing techniques in and around Guntur town, Andhra Pradesh, India. Journal of the Indian Society of Remote Sensing, 29, 69–78. https://doi.org/10.1007/BF0298991610.1007/BF02989916
  40. Rodríguez-Alleres, M., Benito, E., de Blas, E., 2007. Extent and persistence of water repellency in north-western Spanish soils. Hydrological Processes: An International Journal, 21, 17, 2291–2299. https://doi.org/10.1002/hyp.676110.1002/hyp.6761
  41. Santos, J.M., Verheijen, F.G., Tavares Wahren, F., Wahren, A., Feger, K.H., Bernard-Jannin, L., Rial-Rivas, M.E., Keizer, J.J., Nunes, J.P., 2016. Soil water repellency dynamics in pine and eucalypt plantations in Portugal–a high-resolution time series. Land Degradation & Development, 27, 5, 1334–1343. https://doi.org/10.1002/ldr.225110.1002/ldr.2251
  42. Schumacher, B.A., 2002. Methods for the determination of total organic carbon (TOC) in soils and sediments. Ecological Risk Assessment Support Center Office of Research and Development US. Environmental Protection Agency, 25 p.
  43. Şen, Z., 2015. Applied Drought Modeling, Prediction, and Mitigation. Chapter 6: Climate change, droughts, and water resources. Elsevier, pp. 321–391. https://doi.org/10.1016/B978-0-12-802176-7.00006-710.1016/B978-0-12-802176-7.00006-7
  44. Senanayake, I.P., Dissanayake, D.M.D.O.K., Mayadunna, B.B., Weerasekera, W.L., 2016. An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques. Geoscience Frontiers, 7, 115–124. https://doi.org/10.1016/j.gsf.2015.03.00210.1016/j.gsf.2015.03.002
  45. Siteur, K., Mao, J., Nierop, K.G., Rietkerk, M., Dekker, S.C., Eppinga, M.B., 2016. Soil water repellency: a potential driver of vegetation dynamics in coastal dunes. Ecosystems, 19, 7, 1210–1224. https://doi.org/10.1007/s10021-016-9995-910.1007/s10021-016-9995-9
  46. Soil Survey Staff, 2014. Keys to Soil Taxonomy. 12th ed. USDA-Natural Resources Conservation Service, Washington, DC.
  47. Sullivan, L.A., 1990. Soil organic matter, air encapsulation and water-stable aggregation. Journal of Soil Science 41, 3, 529–534. https://doi.org/10.1111/j.1365-2389.1990.tb00084.x10.1111/j.1365-2389.1990.tb00084.x
  48. Vogelmann, E.S., Reichert, J.M., Reinert, D.J., Mentges, M.I., Vieira, D.A., de Barros, C.A.P., Fasinmirin, J.T., 2010. Water repellency in soils of humid subtropical climate of Rio Grande do Sul, Brazil. Soil and Tillage Research, 110, 1, 126–133. https://doi.org/10.1016/j.still.2010.07.00610.1016/j.still.2010.07.006
  49. Wahl, N.A., Bens, O., Schäfer, B., Hüttl, R.F., 2003. Impact of changes in land-use management on soil hydraulic properties: hydraulic conductivity, water repellency and water retention. Physics and Chemistry of the Earth, Parts A/B/C, 28, 33–36, 1377–1387. https://doi.org/10.1016/j.pce.2003.09.01210.1016/j.pce.2003.09.012
  50. Wallis, M.G., Horne, D.J., McAuliffe, K.W., 1990. A study of water repellency and its amelioration in a yellow-brown sand: 1. Severity of water repellency and the effects of wetting and abrasion. New Zealand Journal of Agricultural Research, 33, 1, 139–144. https://doi.org/10.1080/00288233.1990.1043067010.1080/00288233.1990.10430670
  51. Wang, Z., Wu, L., Wu, Q.J., 2000. Water-entry value as an alternative indicator of soil water-repellency and wettability. Journal of Hydrology, 231, 76–83. https://doi.org/10.1016/S0022-1694(00)00185-210.1016/S0022-1694(00)00185-2
  52. Woche, S.K., Goebel, M.-O., Kirkham, M.B., Horton, R., Van der Ploeg, R.R., Bachmann, J., 2005. Contact angle of soils as affected by depth, texture, and land management. European Journal of Soil Science, 56, 2, 239–251. https://doi.org/10.1111/j.1365-2389.2004.00664.x10.1111/j.1365-2389.2004.00664.x
  53. Ziogas, A.K., Dekker, L.W., Oostindie, K., Ritsema, C.J., 2005. Soil water repellency in north-eastern Greece with adverse effects of drying on the persistence. Soil Research, 43, 3, 281–289. https://doi.org/10.1071/SR0408710.1071/SR04087
  54. Zubair, L., Ropelewski, C.F., 2006. The strengthening relationship between ENSO and northeast monsoon rainfall over Sri Lanka and southern India. Journal of Climate, 19, 8, 1567–1575. https://doi.org/10.1175/JCLI3670.110.1175/JCLI3670.1
DOI: https://doi.org/10.2478/johh-2020-0030 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 382 - 391
Submitted on: Apr 19, 2020
Accepted on: Jul 17, 2020
Published on: Oct 20, 2020
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 H.I.G.S. Piyaruwan, P.K.S.C. Jayasinghe, D.A.L. Leelamanie, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.