Have a personal or library account? Click to login
Interspecific variation in growth and tree water status of conifers under water-limited conditions Cover

Interspecific variation in growth and tree water status of conifers under water-limited conditions

Open Access
|Oct 2020

References

  1. Allen, C.D., Breshears, D.D., McDowell, N.G., 2015. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere, 6, 8, Article Number 129.10.1890/ES15-00203.1
  2. Aubin, I., Munson, A.D., Cardou, F., Burton, P.J., Isabel, N., Pedlar, J.H., et al., 2016. Traits to stay, traits to move: are view of functional traits to assess sensitivity and adaptive capacity of temperature and boreal trees to climate change. Environ. Rev., 24, 164–186.10.1139/er-2015-0072
  3. Aussenac, G., 2002. Ecology and ecophysiology of circum-mediterranean firs in the context of climate change. Ann. For. Sci., 59, 823–832.10.1051/forest:2002080
  4. Battipaglia, G., Saurer, M., Cherubini, P., Siegwolf, R.T.W., Cotrufo, M.F., 2009. Tree rings indicate different drought resistance of a native (Abies alba Mill.) and a non-native (Picea abies (L.) Karst.) species co-occurring at a dry site in Southern Italy. For. Ecol. Manag., 257, 820–828.10.1016/j.foreco.2008.10.015
  5. Begum, S., Nakaba, S., Yamagishi, Y., Oribe, Y., Funada, R., 2013. Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees. Physiol. Plant., 147, 46–54.10.1111/j.1399-3054.2012.01663.x22680337
  6. Betsch, P., Bonal, D., Breda, N., Montpied, P., Peiffer, M., Tuzet, A., Granier, A., 2011. Drought effects on water relations in beech: the contribution of exchangeable water reservoirs. Agric. For. Meteorol., 151, 531–543.10.1016/j.agrformet.2010.12.008
  7. Bolte, A., Ammer, C., Löf, M., Nabuurs, G.J., Schall, P., Spathelf, P., Rock, J., 2009. Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scand. J. For. Res., 24, 473–482.10.1080/02827580903418224
  8. Bošeľa, M., Lukáč, M., Castagneri, D., Sedmák, R., Biber, P., Carrer, P. et al., 2018. Contrasting effects of environmental change on the radial growth of cooccurring beech and fir trees across Europe. Sci. Total Environ., 615, 1460–1469.10.1016/j.scitotenv.2017.09.09229055588
  9. Bouriaud, O., Popa, I., 2009. Comparative dendroclimatic study of Scots pine, Norway spruce, and silver fir in the Vrancea Range, Eastern Carpathian Mountains. Trees, 23, 1, 95–106.10.1007/s00468-008-0258-z
  10. Bréda, N., Huc, R., Granier, A., Dreyer, E., 2006. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci., 63, 625–544.10.1051/forest:2006042
  11. Camarero, J.J., Gazol, A., Sangüesa-Barreda, G., Oliva, J., Vicente-Serrano, S.M., 2015. To die or not to die: early warnings of tree dieback in response to a severe drought. J. Ecol., 103, 44–57.10.1111/1365-2745.12295
  12. Caudullo, G., Tinner, W., de Rigo, D., 2016. Picea abies in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (Eds.): European Atlas of Forest Tree Species. European Commission, pp. 114–116.
  13. Čermák, J., Kučera, J., Bauerle, W.L., Phillips, N., Hinckley, T.M., 2007. Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees. Tree Physiol., 27, 181–198.10.1093/treephys/27.2.18117241961
  14. Chan, T., Holtta, T., Berninger, F., Makinen, H., Nojd, P., Mencuccini, M., Nikinmaa, E., 2016. Separating water-potential induced swelling and shrinking from measured radial stem variations reveals a cambial growth and osmotic concentration signal. Plant Cell Environ., 39, 233–244.10.1111/pce.1254125808847
  15. Dietrich, L., Zweifel, R., Kahmen, A., 2018. Daily stem diameter variations can predict the canopy water status of mature temperate trees. Tree Physiol., 38, 7, 941–952.10.1093/treephys/tpy02329554370
  16. Eilmann, B., Rigling, A., 2012. Tree-growth analyses to estimate tree species'drought tolerance. Tree Physiol., 32, 178–187.10.1093/treephys/tps00422363071
  17. Ehrenberger, W., Rüger, S., Fitzke, R., Vollenweider, P., Günthardt-Goerg, M.S., Kuster, T., Zimmermann, U., Arend, M., 2012. Concomitant dendrometer and leaf patch pressure probe measurements reveal the effect of microclimate and soil moisture on diurnal stem water and leaf turgor variations in young oak trees. Funct. Plant Biol., 39, 297–305.10.1071/FP1120632480782
  18. Ellenberger, H., 2009. Vegetation Ecology of Central Europe. Fourth edition. Cambridge University Press, Cambridge, UK.
  19. Geburek, T., 2010. Larix decidua Miller, 1768. In: Roloff, A., Weissgerber, H., Lang, U., Stimm, B. (Eds.): Bäume Mitteleuropas. Wiley, Weinheim, pp. 431–450.
  20. González-Rodríguez, Á.M., Brito, P., Lorenzo, J.R., Gruber, A., Oberhuber, W., Wieser, G., 2017. Seasonal cycles of sap flow and stem radius variation of Spartocytisus supranubius in the alpine zone of Tenerife, Canary Islands. Alp. Bot., 127, 97–108.10.1007/s00035-017-0189-7
  21. Gričar, J., Čufar, K., 2008. Seasonal dynamics of phloem and xylem formation in silver fir and Norway spruce as affected by drought. Russ. J. Plant Physiol., 55, 538–543.10.1134/S102144370804016X
  22. Hartmann, H., 2011. Will a 385 million year-struggle for light become a struggle for water and for carbon? - How trees may cope with more frequent climate change-type drought events. Glob. Change Biol., 17, 642–655.10.1111/j.1365-2486.2010.02248.x
  23. Hinckley, T.M., Lassoie, J.P., Running, S.W., 1978. Temporal and spatial variations in water status of forest trees. For. Sci. Monogr., 20, 1–72.
  24. Hlásny, T., Barcza, Z., Fabrika, M., Balázs, B., Chirkina, G., Pajtík, J., Sedmák, R., Turčáni, M., 2011. Climate change impacts on growth and carbon balance of forests in Central Europe. Clim. Res., 47, 219–236.10.3354/cr01024
  25. IPCC, 2013. Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
  26. IPCC, 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  27. Irvine, J., Grace, J., 1997. Continuous measurement of water tensions in the xylem of trees based on the elastic properties of wood. Planta, 202, 455–461.10.1007/s004250050149
  28. Irvine, J., Perks, M.P., Magnani, F., Grace, J., 1998. The response of Pinus sylvestris to drought: stomatal control of transpiration and hydraulic conductance. Tree Physiol., 18, 393–402.10.1093/treephys/18.6.39312651364
  29. Ježík, M., Blaženec, M., Kučera, J., Střelcová, K., Ditmarová, K., 2016. The response of intra-annual stem circumference increase of young European beech provenances to 2012–2014 weather variability. iForest – Biogeosciences and Forestry, 9, 6, 960–969.10.3832/ifor1829-009
  30. Kokfelt, U., Muscheler, R., 2012. Solar forcing of climate during the last millennium recorded in lake sediments from northern Sweden. Holocene, 2, 447–452.10.1177/0959683612460781
  31. Köcher, P., Horna, V., Leuschner, C., 2013. Stem water storage in five coexisting temperate broad-leaved tree species: significance, temporal dynamics and dependence on tree functional traits. Tree Physiol., 33, 817–832.10.1093/treephys/tpt05523999137
  32. Körner, C., Basler, D., 2010. Phenology under global warming. Science, 327, 5972, 1461–1462.10.1126/science.118647320299580
  33. Krakau, U.K., Liesebach, M., Aronen, T., Lelu-Walter, M.-A., Schneck, V., 2013. Scots Pine (Pinus sylvestris L.). In: Pâques, L.E. (Ed.): Forest Tree Breeding in Europe. Current State-of-the-Art and Perspectives. Springer, Dordrecht, New York.10.1007/978-94-007-6146-9_6
  34. Latreille, A., Davi, H., Huard, F., Pichot, Ch., 2017. Variability of the climate-radial growth relationship among Abies alba trees and populations along altitudinal gradients. For. Ecol. Manag., 396, 150–159.10.1016/j.foreco.2017.04.012
  35. Lindner, M., Garcia-Gonzalo, J., Kolstrom, M., Green, T., Reguera, R., Maroschek, M. et al., 2008. Impacts of Climate Change on European Forests and Options for Adaptation. European Forestry Institute, Joensuu, 173 p.
  36. McDowell, N.G., Allen, C.D., 2015. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Change, 5, 669–672.10.1038/nclimate2641
  37. McDowell, N., Pockman, W.T., Allen, C.D., Breshears, D.D., Cobb, N., Kolb, T., et al., 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol., 178, 719–739.10.1111/j.1469-8137.2008.02436.x18422905
  38. Mencuccini, M., Hölttä, T., Sevanto, S., Nikinmaa, E., 2013. Concurrent measurements of change in the bark and xylem diameters of trees reveal a phloem-generated turgor signal. New Phytol., 198, 1143–1154.10.1111/nph.1222423517018
  39. Nourtier, M., Chanzy, A., Cailleret, M., Yingge, X., Huc R., Davi, H., 2014. Transpiration of silver Fir (Abies alba mill.) during and after drought in relation to soil properties in a Mediterranean mountain area. Ann. For. Sci., 71, 683–695.10.1007/s13595-012-0229-9
  40. Oberhuber, W., Stumböck, M., Kofler, W., 1998. Climate-tree-growth relationships of Scots pine stands (Pinus sylvestris L.) exposed to soil dryness. Trees, 13, 19–27.10.1007/PL00009734
  41. Oberhuber, W., Gruber, A., Kofler, W., Swidrak, I., 2014. Radial stem growth in response to microclimate and soil moisture in a drought-prone mixed coniferous forest at an inner Alpine site. Eur. J. Forest Res., 133, 3, 467–479.10.1007/s10342-013-0777-z403576524883053
  42. Oberhuber, W., Hammerle, A., Kofler, W., 2015. Tree water status and growth of saplings and mature Norway spruce (Picea abies) at a dry distribution limit. Front. Plant Sci., 6, 703.10.3389/fpls.2015.00703456135726442019
  43. Oberhuber, W., Sehrt, M., Kitz, F., 2020. Hygroscopic properties of thin dead outher bark layer strongly influence stem diameter variations on short and long time scales in Scots pine (Pinus sylvestris L.). Agric. For. Meteorol., 290, Article Number 108026. DOI: 10.1016/j.agrformet.2020.10802610.1016/j.agrformet.2020.108026730502932565589
  44. Offenthaler, I., Hietz, P., Richter, H., 2001. Wood diameter indicates diurnal and long-term patterns of xylem water potential in Norway spruce. Trees, 15, 215–221.10.1007/s004680100090
  45. Pataki, D.E., Oren, R., Katul, G., Sigmon, J., 1998. Canopy conductance of Pinus taeda, Liquidambar styraciflua and Quercus phellos under varying atmospheric and soil water conditions. Tree Physiol., 18, 307–315.10.1093/treephys/18.5.30712651370
  46. Perämäki, M., Nikinmaa, E., Sevanto, S., Ilvesniemi, H., Siivola, S., Hari, P., Vesala, T., 2001. Tree stem diameter variations and transpiration in Scots pine: an analysis using a dynamic sap flow model. Tree Physiol., 21, 12–13, 889–897.10.1093/treephys/21.12-13.88911498336
  47. Percival, D.B., Walden, A.T., 2000. Wavelet Methods for Time Series Analysis. Cambridge University Press, Cambridge UK.10.1017/CBO9780511841040
  48. Požgaj, A., Kurjatko, S., Chovanec, D., Babiak, M., 1993. Štruktúra a vlastnosti dreva. 1st Ed. Príroda, Bratislava, 483 p.
  49. Rathgeber, C.B.K., Cuny, H.E., Fonti, P., 2016. Biological basis of tree ring formation a crash course. Front. Plant Sci., 7, 734.10.3389/fpls.2016.00734
  50. Rösch, A., Schmidbauer, H., 2018. WaveletComp1.1: A guided tour through the R package. 58 p.10.1016/j.irfa.2018.03.006
  51. Ruosch, M., Spahni, R., Joos, F., Henne, P.D., van der Knaap, W.O., Tinner, W., 2016. Past and future evolution of Abies alba forests in Europe - comparison of a dynamic vegetation model with palaeo data and observations. Glob. Chang. Biol., 22, 727–740.10.1111/gcb.13075
  52. Scholz, F.C., Bucci, S.J., Goldstein, G., Meinzer, F.C., Franco, A.C., Miralles-Wilhelm, F., 2008. Temporal dynamics of stem expansion and contraction in savanna trees: withdrawal and recharge of stored water. Tree Physiol., 28, 469–480.10.1093/treephys/28.3.469
  53. Schuster, R., Oberhuber, W., 2013. Age-dependent climate-growth relationships and regeneration of Picea abies in a drought-prone mixed coniferous forest in the Alps. Can. J. For. Res., 43, 609–618.10.1139/cjfr-2012-0426
  54. Spiecker, H., 2002. Tree rings and forest management in Europe. Dendrochronologia, 20, 1, 191–202.10.1078/1125-7865-00016
  55. Steppe, K., De Pauw, D.J.W., Lemeur, R., Vanrolleghem, P.A., 2006. A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth. Tree Physiol., 26, 257–273.10.1093/treephys/26.3.257
  56. Steppe, K., Sterck, F., Deslauriers, A., 2015. Diel growth dynamics in tree stems: linking anatomy and ecophysiology. Trends Plant Sci., 20, 335–343.10.1016/j.tplants.2015.03.015
  57. Teskey, R., Wertin, T., Bauweraerts, I., Ameye, M., McGuire, M.A., Steppe, K., 2015. Responses of tree species to heat waves and extreme heat events. Plant Cell Environ., 38, 9, 1699–1712.10.1111/pce.12417
  58. Torrence, C., Compo, G.P., 1998. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79, 1, 61–78.10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
  59. Turcotte, A., Rossi, S., Deslauriers, A., Krause, C., Morin, H., 2011. Dynamics of depletion and replenhishment of water storage in stem and roots of black spruce measured by dendrometers. Front. Plant Sci., 2, Article Number 21.10.3389/fpls.2011.00021335558522639583
  60. Usoltsev, V., Merganičová, K., Konôpka, B., Osmirko, A.A., Tsepordey, I.S., Chasovskikh, V.P., 2019. Fir (Abies spp.) stand biomass additive model for Eurasia sensitive to winter temperature and annual precipitation. Cent. Eur. For. J., 65, 166–172.10.2478/forj-2019-0017
  61. van der Maaten, E., van der Maaten-Theunissen, M., Smiljanić, M., Rossi, S., Simard, S., Wilmking, M., Deslauriers, A., Fonti, P., von Arx, G., Bouriaud, O., 2016. dendrometeR: Analyzing the pulse of tree in R. Dendrochronologia, 40, 12–16.10.1016/j.dendro.2016.06.001
  62. van der Maaten, E., van der Maaten-Theunissen, M., Smiljanić, M., Rossi, S., Simard, S., Wilmking, M., Deslauriers, A., Fonti, P., von Arx, G., Bouriaud, O., 2016. DendrometeR: Analyzing the pulse of tree in R. Dendrochronologia, 40, 12–16.10.1016/j.dendro.2016.06.001
  63. Vieira, J., Rossi, S., Campelo, F., Freitas, H., Nabais, C., 2013. Seasonal and daily cycles of stem radial variation of Pinus pinaster in a drought-prone environment. Agric. For. Meteorol., 180, 173–181.10.1016/j.agrformet.2013.06.009
  64. Vitali, V., Büntgen, U., Bauhus, J., 2017. Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany. Glob. Chang. Biol., 23, 5108–5119.10.1111/gcb.1377428556403
  65. Will, R.E., Wilson, S.M., Zou, C.B., Hennessey, T.C., 2013. Increased vapour pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest–grassland ecotone. New Phytol., 200, 366–374.10.1111/nph.1232123718199
  66. Zeidler, A., Borůvka, V., Schönfelder, O., 2018. Comparison of wood quality of douglas fir and spruce from afforested agricultural land and permanent forest land in the Czech Republic. Forests, 9, 1. DOI: 10.3390/f901001310.3390/f9010013
  67. Zweifel, R., 2006. Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. J. Exp. Bot., 57, 6, 1445–1459.10.1093/jxb/erj12516556628
  68. Zweifel, R., Häsler, R., 2001. Dynamics of water storage in mature subalpine Picea abies: temporal and spatial patterns of change in stem radius. Tree Physiol., 21, 561–569.10.1093/treephys/21.9.56111390300
  69. Zweifel, R., Item, H., Hasler, R., 2000. Stem radius changes and their relation to stored water in stems of young Norway spruce trees. Trees, 15, 50–57.10.1007/s004680000072
  70. Zweifel, R., Item, H., Häsler, R., 2001. Link between diurnal stem radius changes and tree water relations. Tree Physiol., 21, 869–877.10.1093/treephys/21.12-13.86911498334
  71. Zweifel, R., Zimmermann, L., Newbery, D.M., 2005. Modelling tree water deficit from microclimate: an approach to quantifying drought stress. Tree Physiol., 25, 147–156.10.1093/treephys/25.2.14715574396
  72. Zweifel, R., Zimmermann, L., Zeugin, F., Newberry, D.M., 2006. Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. J. Exp. Bot., 57, 1445–1459.10.1093/jxb/erj12516556628
  73. Zweifel, R., Drew, D.M., Schweingruber, F., Downes, G.M., 2014. Xylem as the main origin of stem radius changes in Eucalyptus. Funct. Plant Biol., 41, 520–534.10.1071/FP1324032481010
DOI: https://doi.org/10.2478/johh-2020-0028 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 368 - 381
Submitted on: Dec 4, 2019
Accepted on: Jul 7, 2020
Published on: Oct 20, 2020
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Adriana Leštianska, Peter Fleischer, Peter Fleischer, Katarína Merganičová, Katarína Střelcová, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.