Have a personal or library account? Click to login
Experimental investigation of the effect of vegetation on dam break flood waves Cover

Experimental investigation of the effect of vegetation on dam break flood waves

Open Access
|Aug 2020

References

  1. Elkholy, M., Larocque, L.A., Chaudhry, M.H., Imran, J., 2016. Experimental investigations of partial-breach dam-break flows. J. Hydraul. Eng., 142, 1–12. https://doi.org/10.1061/(ASCE)HY.1943-7900.000118510.1061/(ASCE)HY.1943-7900.0001185
  2. Ferrari, A., Fraccarollo, L., Dumbser, M., Toro, E.F., Armanini, A., 2010. Three-dimensional flow evolution after a dam break. J. Fluid Mech., 663, 456–477. https://doi.org/10.1017/S002211201000359910.1017/S0022112010003599
  3. Güney, M.S., Tayfur, G., Bombar, G., Elci, S., 2014. Distorted physical model to study sudden partial dam break flows in an urban area. J. Hydraul. Eng., 140, 05014006. https://doi.org/10.1061/(ASCE)HY.1943-7900.000092610.1061/(ASCE)HY.1943-7900.0000926
  4. Haltas, I., Tayfur, G., Elci, S., 2016. Two-dimensional numerical modeling of flood wave propagation in an urban area due to Ürkmez dam-break, İzmir, Turkey. Nat. Hazards, 81, 2103–2119. https://doi.org/10.1007/s11069-016-2175-610.1007/s11069-016-2175-6
  5. He, Z., Wu, T., Weng, H., Hu, P., Wu, G., 2017. Numerical simulation of dam-break flow and bed change considering the vegetation effects. Int. J. Sediment Res., 32, 105–120. https://doi.org/10.1016/j.ijsrc.2015.04.00410.1016/j.ijsrc.2015.04.004
  6. Hooshyaripor, F., Tahershamsi, A., Razi, S., 2017. Dam break flood wave under different reservoir’s capacities and lengths. Sadhana - Acad. Proc. Eng. Sci., 42, 1557–1569. https://doi.org/10.1007/s12046-017-0693-x10.1007/s12046-017-0693-x
  7. Ismail, H., Abd Wahab, A.K., Alias, N.E., 2012. Determination of mangrove forest performance in reducing tsunami run-up using physical models. Nat. Hazards, 63, 939–963. https://doi.org/10.1007/s11069-012-0200-y10.1007/s11069-012-0200-y
  8. Kocaman, S., Ozmen-Cagatay, H., 2015. Investigation of dam-break induced shock waves impact on a vertical wall. J. Hydrol., 525, 1–12. https://doi.org/10.1016/j.jhydrol.2015.03.04010.1016/j.jhydrol.2015.03.040
  9. LaRocque, L.A., Imran, J., Chaudhry, M.H., 2013. Experimental and numerical investigations of two-dimensional dam-break flows. J. Hydraul. Eng., 139, 569–579. https://doi.org/10.1061/(asce)hy.1943-7900.000070510.1061/(ASCE)HY.1943-7900.0000705
  10. Lauber, G., Hager, W.H., 1998. Experiments to dambreak wave: Horizontal channel. J. Hydraul. Res., 36, 291–307. https://doi.org/10.1080/0022168980949862010.1080/00221689809498620
  11. Liu, L., Sun, J., Lin, B., Lu, L., 2018. Building performance in dam-break flow–an experimental study. Urban Water J., 15, 251–258. https://doi.org/10.1080/1573062X.2018.143386210.1080/1573062X.2018.1433862
  12. Ozmen-Cagatay, H., Kocaman, S., 2010. Dam-break flows during initial stage using SWE and RANS approaches. J. Hydraul. Res., 48, 603–611. https://doi.org/10.1080/00221686.2010.50734210.1080/00221686.2010.507342
  13. Ozmen-Cagatay, H., Kocaman, S., Guzel, H., 2014. Investigation of dam-break flood waves in a dry channel with a hump. J. Hydro-Environment Res., 8, 304–315. https://doi.org/10.1016/j.jher.2014.01.00510.1016/j.jher.2014.01.005
  14. Soares-Frazão, S., 2007. Experiments of dam-break wave over a triangular bottom sill. J. Hydraul. Res., 45, 19–26. https://doi.org/10.1080/00221686.2007.952182910.1080/00221686.2007.9521829
  15. Soares-Frazão, S., Zech, Y., 2008. Dam-break flow through an idealised city. J. Hydraul. Res., 46, 648–658. https://doi.org/10.3826/jhr.2008.316410.3826/jhr.2008.3164
  16. Tayfur, G., Güney, M.Ş., Haltaş, İ., Elçi, Ş., Bombar, G., 2013. Experimental and Numerical Investigation of Dam Break Floods - GIS Applications for Dams. TUBITAK Project No : 110M240 (Final Report). (In Turkish.)
  17. Tiwari, H., Khan, A., Sharma, N., 2016. Emerging methodologies for turbulence characterization in river dynamics study. In: Sharma, N. (Ed.): River System Analysis and Management. Springer, pp. 167–186. ISBN: 9811014728. ISBN: 9789811014727.10.1007/978-981-10-1472-7_9
  18. Zhang, M.L., Xu, Y.Y., Qiao, Y., Jiang, H.Z., Zhang, Z.Z., Zhang, G.S., 2016. Numerical simulation of flow and bed morphology in the case of dam break floods with vegetation effect. J. Hydrodyn., 28, 23–32. https://doi.org/10.1016/S1001-6058(16)60604-210.1016/S1001-6058(16)60604-2
  19. Zhang, T., Fang, F., Feng, P., 2017. Simulation of dam/levee-break hydrodynamics with a three-dimensional implicit unstructured-mesh finite element model. Environ. Fluid Mech., 17, 959–979. https://doi.org/10.1007/s10652-017-9530-310.1007/s10652-017-9530-3
DOI: https://doi.org/10.2478/johh-2020-0026 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 231 - 241
Submitted on: May 7, 2020
Accepted on: Jul 1, 2020
Published on: Aug 10, 2020
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Semire Oguzhan, Aysegul Ozgenc Aksoy, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.