Have a personal or library account? Click to login
Changes in direct CO2 and N2O emissions from a loam Haplic Luvisol under conventional moldboard and reduced tillage during growing season and post-harvest period of red clover Cover

Changes in direct CO2 and N2O emissions from a loam Haplic Luvisol under conventional moldboard and reduced tillage during growing season and post-harvest period of red clover

Open Access
|Aug 2020

References

  1. Abdalla, M., Jones, M., Ambus, P., Williams, M., 2010. Emissions of nitrous oxide from Irish arable soils: effects of tillage and reduced N input. Nutr. Cycl. Agroecosyst., 1, 53–65.10.1007/s10705-009-9273-8
  2. Alaoui, A., Lipiec, J., Gerke, H.H., 2011. A review of the changes in the soil pore system due to soil deformation: A hydrodynamic perspective. Soil Till. Res., 115, 1–15.10.1016/j.still.2011.06.002
  3. Beheydt, D., Boeckx, P., Ahmed, H.P., Van Cleemput, O., 2008. N2O emission from conventional and minimum-tilled soils. Biol. Fertil. Soils, 44, 863–873.10.1007/s00374-008-0271-9
  4. Buchkina, N., Rizhiya, E., Balashov, E., 2012. N2O emission from a loamy sand Spodosol as related to soil fertility and N-fertilizer application for barley and cabbage. Arch. Agron. Soil Sci., 58, S141–S146.10.1080/03650340.2012.698729
  5. Buragienė, S., Šarauskis, E., Romaneckas, K., Adamavičienė, A., Kriaučiūnienė, Z., Avižienytė, D., Marozas, V., Naujokienė, V., 2019. Relationship between CO2 emissions and soil properties of differently tilled soils. Sci. Total Environ., 662, 786–795.10.1016/j.scitotenv.2019.01.23630708294
  6. Castellini, M., Ventrella, D., 2012. Impact of conventional and minimum tillage on soil hydraulic conductivity in typical cropping system in Southern Italy. Soil Till. Res., 124, 47–56.10.1016/j.still.2012.04.008
  7. Chou, W.W., Silver, W.L., Jackson, R.D., Thompson, A.W., Allen-Diaz, B., 2008. The sensitivity of annual grassland carbon cycling to the quantity and timing of rainfall. Global Change Biol., 14, 1382–1394.10.1111/j.1365-2486.2008.01572.x
  8. de Oliveira Silva, B., Moitinho, M.R., de Araujo Santos, G.A., Teixeira, D.D.B., Fernandes, C., La Scala Jr, N., 2019. Soil CO2 emission and short-term soil pore class distribution after tillage operations. Soil Till. Res., 186, 224–232.10.1016/j.still.2018.10.019
  9. Dimassi, B., Mary, B., Wylleman, R., Labreuche, J., Couture, D., Piraux, F., Cohan, J.P., 2014. Long-term effect of contrasted tillage and crop management on soil carbon dynamics during 41 years. Agric. Ecosyst. Environ., 188, 134–146.10.1016/j.agee.2014.02.014
  10. Dobbie, K.E., Smith, K.A., 2003. Nitrous oxide emission factors for agricultural soils in Great Britain: The impact of soil water-filled pore space and other controlling variables. Global Change Biol., 9, 204–218.10.1046/j.1365-2486.2003.00563.x
  11. Drinkwater, L.E., Janke, R.R., Rossoni-Longnecker, L., 2000. Effects of tillage intensity on nitrogen dynamics and productivity in legume-based grain systems. Plant Soil, 227, 99–113.10.1023/A:1026569715168
  12. Elbl, J., Vaverková, M., Adamcová, D., Plošek, L., Kintl, A., Lošák, T., Hynšt, J., Kotovicová, J., 2014. Influence of fertilization on microbial activities, soil hydrophobicity and mineral nitrogen leaching. Ecol. Chem. Eng. S, 21, 661–675.10.1515/eces-2014-0048
  13. Elder, J.W., Lal, R., 2008. Tillage effects on gaseous emissions from an intensively farmed organic soil in North Central Ohio. Soil Till. Res., 98, 45–55.10.1016/j.still.2007.10.003
  14. Elmi, A.A., Madramootoo, C., Hamel, C., Liu, A., 2003. Denitrification and nitrous oxide to nitrous oxide plus dinitrogen ratios in the soil profile under three tillage systems. Biol. Fertil. Soils, 38, 340–348.10.1007/s00374-003-0663-9
  15. Forte, A., Fiorentino, N., Fagnano, M., Fierro, A., 2017. Mitigation impact of minimum tillage on CO2 and N2O emissions from a Mediterranean maize cropped soil under low-water input management. Soil Till. Res., 166, 167–178.10.1016/j.still.2016.09.014
  16. Fuß, R., Ruth, B., Schilling, R., Scherb, H., Munch, J.C., 2011. Pulse emissions of N2O and CO2 from an arable field depending on fertilization and tillage practice. Agr. Ecosyst. Environ., 144, 61–68.10.1016/j.agee.2011.07.020
  17. Głąb, T., Kulig, B., 2008. Effect of mulch and tillage system on soil porosity under wheat (Triticum aestivum). Soil Till. Res., 99, 169–178.10.1016/j.still.2008.02.004
  18. Groenigen, J.W., Georgius, P.J., van Kessel, C., Hummelink, E.W., Velthof, G.L., Zwart, K.B., 2005. Subsoil 15N-N2O concentrations in a sandy soil profile after application of 15N-fertilizer. Nutr. Cycl. Agroecosyst., 72, 13–25.10.1007/s10705-004-7350-6
  19. Guardia, G., Tellez-Rio, A., García-Marco, S., Martin-Lammerding, D., Tenorio, J.L., Ibáñez, M.Á., Vallejo, A., 2016. Effect of tillage and crop (cereal versus legume) on greenhouse gas emissions and Global Warming Potential in a non-irrigated Mediterranean field. Agric. Ecosyst. Environ., 221, 187–197.10.1016/j.agee.2016.01.047
  20. Horák, J., Igaz, D., Kondrlová, E., 2014. Short-term soil carbon dioxide (CO2) emission after application of conventional and reduced tillage for red clover in Western Slovakia. Euras. J. Soil Sci., 3, 206–211.10.18393/ejss.18500
  21. Horák, J., Balashov, E., Šimanský, V., Igaz, D., Buchkina, N., Aydin, E., Bárek, V., Drgoňová, K., 2019. Effects of conventional moldboard and reduced tillage on seasonal variations of direct CO2 and N2O emissions from a loam Haplic Luvisol. Biologia, 74, 767–782.10.2478/s11756-019-00216-z
  22. Horák, J., Mukhina, I., 2016. Measured and modeled (DNDC) nitrous oxide emissions (N2O) under different crop management practices in the Nitra region, Slovakia. Acta Horticulturae et Regiotecturae, 2, 54–57.10.1515/ahr-2016-0012
  23. Jabro, J.D., Stevens, W.B., Iversen, W.M., Evans, R.G., 2010. Tillage depth effects on soil physical properties, sugarbeet yield, and sugarbeet quality. Commun. Soil Sci. Plant Analys., 41, 908–916.10.1080/00103621003594677
  24. Kieft, T.L., Soroker, E., Firestone, M.K., 1987. Microbial bio-mass response to a rapid increase in water potential when dry soil is wetted. Soil Biol. Biochem., 19, 119–126.10.1016/0038-0717(87)90070-8
  25. Kong, A.Y., Fonte, S.J., van Kessel, C., Six, J., 2009. Transitioning from standard to minimum tillage: Trade-offs between soil organic matter stabilization, nitrous oxide emissions, and N availability in irrigated cropping systems. Soil Till. Res., 104, 256–262.10.1016/j.still.2009.03.004
  26. Krauss, M., Ruser, R., Műller, T., Hansen, S., Mäder, P., Gattinger, A., 2017. Impact of reduced tillage on greenhouse gas emissions and soil carbon stocks in an organic grass-clover ley-winter wheat cropping sequence. Agric. Ecosyst. Environ., 239, 324–333.10.1016/j.agee.2017.01.029536215328366969
  27. Lee, J., Hopmans, J.W., van Kessel, C., King, A.P., Evatt, K.J., Louie, D., Rolston, D.E., Six, J., 2009. Tillage and seasonal emissions of CO2, N2O and NO across a seed bed and at the field scale in a Mediterranean climate. Agric. Ecosyst. Environ., 129, 378–390.10.1016/j.agee.2008.10.012
  28. Lipiec, J., Kuś, J., Słowińska-Jurkiewicz, A., Nosalewicz, A., 2006. Soil porosity and water infiltration as influenced by tillage methods. Soil Till. Res., 89, 210–220.10.1016/j.still.2005.07.012
  29. Mangalassery, S., Sjögersten, S., Sparkes, D.L., Sturrock, C.J., Craigon, J., Mooney, S.J., 2014. To what extent can zero tillage lead to a reduction in greenhouse gas emissions from temperate soils? Scientific Reports, 4, 1–8.10.1038/srep04586397545424699273
  30. Mitchell, D.C., Castellano, M.J., Sawyer, J.E., Pantoja, J., 2013. Cover crop effects on nitrous oxide emissions: role of mineralizable carbon. Soil Sci. Soc. Am. J., 77, 1765–1773.10.2136/sssaj2013.02.0074
  31. Muñoz-Romero, V., Lopez-Bellido, L., Lopez-Bellido, R.J., 2015. Effect of tillage system on soil temperature in a rain-fed Mediterranean Vertisol. Int. Agrophys., 29, 467–473.10.1515/intag-2015-0052
  32. Mutegi, J.K., Munkholm, L.J., Petersen, B.M., Hansen, E.M., Petersen, S.O., 2010. Nitrous oxide emissions and controls as influenced by tillage and crop residue management strategy. Soil Biol. Biochem., 42, 1701–1711.10.1016/j.soilbio.2010.06.004
  33. Nan, W., Yue, S., Li, S., Huang, H., Shen, Y., 2016. Characteristics of N2O production and transport within soil profiles subjected to different nitrogen application rates in China. Sci. Total Environ., 542, 864–875.10.1016/j.scitotenv.2015.10.147
  34. Nkongolo, N.V., Johnson, S., Schmidt, K., Eivazi, F., 2010. Greenhouse gases fluxes and soil thermal properties in a pasture in central Missouri. J. Environ. Sci., 22, 1029–1039.10.1016/S1001-0742(09)60214-X
  35. Ochsner, T.E., Sauer, T.J., Horton, R., 2007. Soil heat storage measurements in energy balance studies. Agron. J., 99, 311–319.10.2134/agronj2005.0103S
  36. Orfanus, T., Amer, A.M., Jozefaciuk, G., Fulajtar, E., Čelková, A., 2017. Water vapour adsorption on water repellent sandy soils. J. Hydrol. Hydromech., 65, 395–401.10.1515/johh-2017-0030
  37. Poeplau, C., Don, A., 2015. Carbon sequestration in agricultural soils via cultivation of cover crops – A meta-analysis. Agric. Ecosyst. Environ., 200, 33–41.10.1016/j.agee.2014.10.024
  38. Rizhiya, E., Olenchenko, E., Pavlik, S., Balashov, E., Buchkina, N., 2008. Effect of mineral fertilizers on crop yields and N2O emission from loamy sand Spodosol of northwestern Russia. Cereal Res. Commun., 36, 1299–1302.
  39. Salem, H.M., Valero, C., Muñoz, M.Á., Rodríguez, M.G., Silva, L.L., 2015. Short-term effects of four tillage practices on soil physical properties, soil water potential, and maize yield. Geoderma, 237, 60–70.10.1016/j.geoderma.2014.08.014
  40. Sheehy, J., Six, J., Alakukku. L., Regina, K., 2013. Fluxes of nitrous oxide in tilled and no-tilled boreal arable soils. Agric. Ecosyst. Environ., 164, 190–199.10.1016/j.agee.2012.10.007
  41. Šimanský, V., Tobiašová, E., Chlpík, J., 2008. Soil tillage and fertilization of Orthic Luvisol and their influence on chemical properties, soil structure stability and carbon distribution in water-stable macro-aggregates. Soil Till. Res., 100, 125–132.10.1016/j.still.2008.05.008
  42. Šimanský, V., Balashov, E., Horák, J., 2016. Water stability of soil aggregates and their ability to sequester carbon in soils of vineyards in Slovakia. Arch. Agron. Soil Sci., 62, 177–197.10.1080/03650340.2015.1048683
  43. Smith, K.A., 1980. A model of the extent of anaerobic zones in aggregated soils, and its potential application to estimates of denitrification. J. Soil Sci., 31, 263–277.10.1111/j.1365-2389.1980.tb02080.x
  44. Soil Survey Division Staff, 1996. Laboratory Methods Manual. Soil Survey Investigations Report No. 42. USDA–NRCS, Washington, 716 p.
  45. Soon, Y.K., Arshad, M.A., Haq, A., Lupwayi, N., 2007. The influence of 12 years of tillage and crop rotation on total and labile organic carbon in a sandy loam soil. Soil Till. Res., 95, 38–46.10.1016/j.still.2006.10.009
  46. Soussana, J.F., Lutfalla, S., Ehrhardt, F., Rosenstock, T., Lamanna, C., Havlík, P., Richards, M., Wollenberg, E., Chotte, J.-L., Torquebiau, E., Ciais, P., Smith, P., Lal, R., 2019. Matching policy and science: Rationale for the ‘4 per 1000-soils for food security and climate’initiative. Soil Till. Res., 188, 3–15.10.1016/j.still.2017.12.002
  47. Syakila, A., Kroeze, C., 2011. The global nitrous oxide budget revisited. Greenhouse Gas Measur. Manag., 1, 17–26.10.3763/ghgmm.2010.0007
  48. Ussiri, D.A.N., Lal, R., Jarecki, M.K., 2009. Nitrous oxide and methane emissions from long-term tillage under a continuous corn cropping system in Ohio. Soil Till. Res., 104, 247–255.10.1016/j.still.2009.03.001
  49. Wang, Y.Y., Hu, C.S., Ming, H., Zhang, Y.M., Li, X.X., Dong, W.X., Oenema, O., 2013. Concentration profiles of CH4, CO2 and N2O in soils of a wheat–maize rotation ecosystem in North China Plain, measured weekly over a whole year. Agric. Ecosyst. Environ., 164, 260–272.10.1016/j.agee.2012.10.004
  50. Wessa, P., 2017. Free Statistics Software, Office for Research Development and Education, version 1.1.23-r7. https://www.wessa.net
  51. Wrage, N., Velthof, G.L., van Beusichem, M.L., Oenema, O., 2001. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol. Biochem., 33, 1723–1732.10.1016/S0038-0717(01)00096-7
  52. Yuen, S.H., Pollard, A.G., 1954. Determination of nitrogen in agricultural materials by the Nessler reagent. II. Micro-determinations in plant tissue and in soil extracts. J. Sci. Food Agric., 5, 364–369.10.1002/jsfa.2740050803
  53. Zhang, G.S., Chan, K.Y., Oates, A., Heenan, D.P., Huang, G.B., 2007. Relationship between soil structure and runoff/soil loss after 24 years of conservation tillage. Soil Till. Res., 92, 122–128.10.1016/j.still.2006.01.006
DOI: https://doi.org/10.2478/johh-2020-0023 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 271 - 278
Submitted on: May 7, 2020
Accepted on: Jun 10, 2020
Published on: Aug 10, 2020
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Ján Horák, Dušan Igaz, Elena Aydin, Vladimír Šimanský, Natalya Buchkina, Eugene Balashov, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.