Have a personal or library account? Click to login
A new method for extracting spanwise vortex from 2D particle image velocimetry data in open-channel flow Cover

A new method for extracting spanwise vortex from 2D particle image velocimetry data in open-channel flow

Open Access
|Aug 2020

References

  1. Adrian, R.J., Marusic, I., 2012. Coherent structures in flow over hydraulic engineering surfaces. Journal of Hydraulic Research, 50, 451–464.10.1080/00221686.2012.729540
  2. Adrian, R.J., Meinhart, C.D., Tomkins, C.D., 2000. Vortex organization in the outer region of the turbulent boundary layer. Journal of Fluid Mechanics, 422, 1–54.10.1017/S0022112000001580
  3. Baidya, R., Philip, J., Hutchins, N., Monty, J.P., Marusic, I., 2017. Distance-from-the-wall scaling of turbulent motions in wall-bounded flows. Physics of Fluids, 29, 020712.10.1063/1.4974354
  4. Cao, L.K., Li, D.X., Chen, H., Liu, C.J., 2017. Spatial relationship between energy dissipation and vortex tubes in channel flow. Journal of Hydrodynamics, 29, 575–585.10.1016/S1001-6058(16)60770-9
  5. Carlier, J., Stanislas, M., 2005. Experimental study of eddy structures in a turbulent boundary layer using particle image velocimetry. Journal of Fluid Mechanics, 535, 143–188.10.1017/S0022112005004751
  6. Chen, Q.G., Li, D.X., Zhong, Q., Wang, X.K., 2013. Analysis of vortex structure in open channel turbulence based on model matching. Advances in Water Science, 24, 95–102. (In Chinese.)
  7. Chen, Q.G., Adrian, R.J., Zhong, Q., Li, D.X., Wang, X.K., 2014a. Experimental study on the role of spanwise vorticity and vortex filaments in the outer region of open-channel flow. Journal of Hydraulic Research, 52, 476–489.10.1080/00221686.2014.919965
  8. Chen, Q.G., Zhong, Q., Wang, X.K., Li, D.X., 2014b. An improved swirling-strength criterion for identifying spanwise vortices in wall turbulence. Journal of Turbulence, 15, 71–87.10.1080/14685248.2014.881488
  9. Chong, M.S., Perry, A.E., Cantwell, B.J., 1990. A general classification of three-dimensional flow fields. Physics of Fluids A, 2, 765–777.10.1063/1.857730
  10. Cucitore, R., Quadrio, M., Baron, A., 1999. On the effectiveness and limitations of local criteria for the identification of a vortex. European Journal of Mechanics, B/Fluids, 18, 261–282.10.1016/S0997-7546(99)80026-0
  11. Dong, X., Wang, Y., Chen, X., Dong, Y., 2018. Determination of epsilon for Omega vortex identification method. Journal of Hydrodynamics, 30, 541–548.10.1007/s42241-018-0066-x
  12. Dong, Y., Yan, Y., Liu, C., 2016. New visualization method for vortex structure in turbulence by lambda2 and vortex filaments. Applied Mathematical Modelling, 40, 500–509.10.1016/j.apm.2015.04.059
  13. Epps, B., 2017. Review of Vortex Identification Methods. In: 55th AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics, Texas, p. 0989.10.2514/6.2017-0989
  14. Gao, Q., Ortiz-Dueñs, C., Longmire, E.K., 2011. Analysis of vortex populations in turbulent wall-bounded flows. Journal of Fluid Mechanics, 678, 87–123.10.1017/jfm.2011.101
  15. Hunt, J.C.R., Wray, A.A., Moin, P., 1988. Eddies, streams, and convergence zones in turbulent flows. In: Center for Turbulence Research Report, pp. 193–208.
  16. Hurther, D., Lemmin, U., Terray, E.A., 2007. Turbulent transport in the outer region of rough-wall open-channel flows: The contribution of large coherent shear stress structures (LC3S). Journal of Fluid Mechanics, 574, 465–493.10.1017/S0022112006004216
  17. Jeong, J., Hussain, F., 1995. On the identification of a vortex. Journal of Fluid Mechanics, 285, 69–94.10.1017/S0022112095000462
  18. Jiménez, J., 2018. Coherent structures in wall-bounded turbulence. Journal of Fluid Mechanics, 842, P1.10.1017/jfm.2018.144
  19. Kolář, V., 2007. Vortex identification: New requirements and limitations. International Journal of Heat and Fluid Flow, 28, 638–652.10.1016/j.ijheatfluidflow.2007.03.004
  20. Kolář, V., 2010. A note on integral vortex strength. Journal of Hydrology and Hydromechanics, 58, 23–28.10.2478/v10098-010-0003-3
  21. Komori, S., Murakami, Y., Ueda, H., 1989. The relationship between surface-renewal and bursting motions in an open-channel flow. Journal of Fluid Mechanics, 203, 103–123.10.1017/S0022112089001394
  22. Liu, C.Q., Wang, Y.Q., Yang, Y., Duan, Z.W., 2016. New omega vortex identification method. Science China: Physics, Mechanics and Astronomy, 59, 684711.10.1007/s11433-016-0022-6
  23. Natrajan, V.K., Wu, Y., Christensen, K.T., 2007. Spatial signatures of retrograde spanwise vortices in wall turbulence. Journal of Fluid Mechanics, 574, 155–167.10.1017/S0022112006003788
  24. Nezu, I., Sanjou, M., 2011. PIV and PTV measurements in hydro-sciences with focus on turbulent open-channel flows. Journal of Hydro-Environment Research, 5, 215–230.10.1016/j.jher.2011.05.004
  25. Robinson, S.K., 1991. Coherent motions in the turbulent boundary layer. Annual Review of Fluid Mechanics, 23, 601–639.10.1146/annurev.fl.23.010191.003125
  26. Roussinova, V., Shinneeb, A.-M., Balachandar, R., 2010. Investigation of fluid structures in a smooth open-channel flow using proper orthogonal decomposition. Journal of Hydraulic Engineering, 136, 143–154.10.1061/(ASCE)HY.1943-7900.0000155
  27. Singha, A., Balachandar, R., 2011. Coherent structure statistics in the wake of a sharp-edged bluff body placed vertically in a shallow channel. Fluid Dynamics Research, 43, 055504.10.1088/0169-5983/43/5/055504
  28. Stanislas, M., Perret, L., Foucaut, J.M., 2008. Vortical structures in the turbulent boundary layer: A possible route to a universal representation. Journal of Fluid Mechanics, 602, 327–382.10.1017/S0022112008000803
  29. Wu, Y., Christensen, K.T., 2006. Population trends of spanwise vortices in wall turbulence. Journal of Fluid Mechanics, 568, 55–76.10.1017/S002211200600259X
  30. Yang, S.F., Zhang, P., Hu, J., Li, W.J., Chen, Y., 2016. Distribution and motion characteristics of Q-events for open-channel uniform flow. Advances in Water Science, 27, 430–438. (In Chinese.)
  31. Zhang, P., Yang, S.F., Hu, J., Chen, Y., Xin, Y., 2015. Distribution of motion scales of vortices in turbulent open channel flow. Advances in Water Science, 26, 91–98. (In Chinese.)
  32. Zhang, Y., Qiu, X., Chen, F., Liu, K., 2018. A selected review of vortex identification methods with applications. Journal of Hydrodynamics, 30, 767–779.10.1007/s42241-018-0112-8
  33. Zhong, Q., Li, D.X., Chen, Q.G., Wang, X.K., 2015. Coherent structures and their interactions in smooth open channel flows. Environmental Fluid Mechanics, 15, 653–672.10.1007/s10652-014-9390-z
  34. Zhong, Q., Chen, Q.G., Wang, H., Li, D.X., Wang, X.K., 2016. Statistical analysis of turbulent super-streamwise vortices based on observations of streaky structures near the free surface in the smooth open channel flow. Water Resources Research, 52, 3563–3578.10.1002/2015WR017728
  35. Zhong, Q., Chen, Q., Chen, H., Li, D.X., 2017. A topological method for vortex identification in turbulent flows. Fluid Dynamics Research, 49, 015509.10.1088/1873-7005/49/1/015509
  36. Zhou, J., Adrian, R.J., Balachandar, S., Kendall, T.M., 1999. Mechanisms for generating coherent packets of hairpin vortices in channel flow. Journal of Fluid Mechanics, 387, 353–396.10.1017/S002211209900467X
DOI: https://doi.org/10.2478/johh-2020-0020 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 242 - 248
Submitted on: Sep 3, 2019
Accepted on: Apr 28, 2020
Published on: Aug 10, 2020
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Peng Zhang, Shengfa Yang, Jiang Hu, Wenjie Li, Xuhui Fu, Danxun Li, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.