Have a personal or library account? Click to login
The role of stony soils in hillslope and catchment runoff formation Cover

The role of stony soils in hillslope and catchment runoff formation

Open Access
|May 2020

References

  1. Al-Qinna, M., Scott, H.D., Brye, K.R., Brahana, J.V., Sauer, T.J., Sharpley, A., 2014. Coarse fragments affect soil properties in a mantled-karst landscape of the Ozark Highlands. Soil Sci., 179, 42–50.10.1097/SS.0000000000000034
  2. Bachmair, S., Weiler, M., 2011. New dimensions of hillslope hydrology. In: Levia, D.F. (Ed.): Forest Hydrology and Biogeochemistry. Synthesis of Past Research and Future Directions. Ecological Studies, Vol. 2016. Springer, pp. 455–482.10.1007/978-94-007-1363-5_23
  3. Beven, K., Germann, P., 1982. Macropores and water flow in soils. Water Resour Res., 18, 5, 1311–1325.10.1029/WR018i005p01311
  4. Botter, G., Rinaldo, A., 2003. Scale effect on geomorphologic and kinematic dispersion. Water Resour. Res., 39, 1286.10.1029/2003WR002154
  5. Bouwer, H., Rice, R.C., 1984. Hydraulic properties of stony vadose zones. Ground Water, 22, 696–705.10.1111/j.1745-6584.1984.tb01438.x
  6. Brunner, M.I, Viviroli, D., Furrer, R., Seibert, J., Favre, A.C., 2018. Identification of flood reactivity regions via the functional clustering of hydrographs. Water Resources Research, 54, 3, 1852–1867.10.1002/2017WR021650
  7. Buchter, B., Hinz, C., Flühler, H., 1994. Sample size for determination of coarse fragment content in a stony soil. Geoderma, 63, 265–275.10.1016/0016-7061(94)90068-X
  8. Chen, H., Liu, J., Zhang, W., Wang, K., 2012. Soil hydraulic properties on the steep karst hillslopes in northwest Guangxi, China. Environ. Earth Sci., 66, 371–379.10.1007/s12665-011-1246-y
  9. Collischonn, W., Fleischmann, A., Paiva, R.C.D., Mejia, A., 2017. Hydraulic causes for basin hydrograph skewness. Water Resour. Res., 53, 10603–10618.10.1002/2017WR021543
  10. Coppola, A., Dragonetti, G., Comegna, A., Lamaddalena, N., Caushi, B., Haikal, M.A., Basile, A., 2013. Measuring and modeling water content in stony soils. Soil Till. Res., 128, 9–22.10.1016/j.still.2012.10.006
  11. Dane, J.H., Hopmans, J.W., 2002. Pressure plate extractor. In: Dane, J.H., Topp, G.C., (Eds.): Methods of Soil Analysis, Part 4, Physical Methods. SSSA Book Series 5, SSSA, Madison, WI, pp. 688–690.10.2136/sssabookser5.4
  12. Hlaváčiková, H., Novák, V., Holko, L., 2015. On the role of rock fragments and initial soil water content in the potential subsurface runoff formation. J. Hydrol. Hydromech., 63, 71–81.10.1515/johh-2015-0002
  13. Hlaváčiková, H., Novák, V., Šimůnek, J., 2016. The effects of rock fragment shapes and positions on modeled hydraulic conductivities of stony soils. Geoderma, 281, 39–48.10.1016/j.geoderma.2016.06.034
  14. Hlaváčiková, H., Novák, V., Kostka, Z., Danko, M., Hlavčo, J., 2018. The influence of stony soil properties on water dynamics modeled by the HYDRUS model. J. Hydrol. Hydromech., 66, 181–188.10.1515/johh-2017-0052
  15. Hlaváčiková, H., Holko, L., Danko, M., Novák, V., 2019. Estimation of macropore flow characteristics in stony soils of a small mountain catchment. J. Hydrol., 574, 1176–1187.10.1016/j.jhydrol.2019.05.009
  16. Holko, L., Lepistő, A., 1997. Modelling the hydrological behaviour of a mountainous catchment using TOPMODEL. J. Hydrol., 196, 361–377.10.1016/S0022-1694(96)03237-4
  17. Holko, L., Kostka, Z., 2010. Hydrological processes in mountains – knowledge gained in the Jalovecky Creek catchment, Slovakia. IAHS Publication, 336. IAHS Press, Wallingford, pp. 84–89.
  18. Holko, L., Kostka, Z., Šanda, M., 2011. Assessment of frequency and areal extent of overland flow generation in a forested mountain catchment. Soil Water Res., 6, 43–53.10.17221/33/2010-SWR
  19. Holko, L., Bičárová, S., Hlavčo, J., Danko, M., Kostka, Z., 2018. Isotopic hydrograph separation in two small mountain catchments during multiple events. Cuadernos de Investigación Geográfica, 44, 2, 453–473.10.18172/cig.3344
  20. Holko, L., Sleziak, P., Danko, M., Bičárová, S., Pociask-Karteczka, J., 2020a. Analysis of changes in hydrological cycle of a pristine mountain catchment. 1. Hydrometric data. Journal of Hydrology and Hydromechanics, 68, 2, 180–191.10.2478/johh-2020-0010
  21. Holko, L., Danko, M., Sleziak, P., 2020b. Analysis of changes in hydrological cycle of a pristine mountain catchment. 2. Isotopic data, trend and attribution analyses. Journal of Hydrology and Hydromechanics, 68, 2, 192–199.10.2478/johh-2020-0011
  22. Kostka, Z., 2009. Runoff response to rainfall event in the mountain catchment. Acta Hydrologica Slovaca, 10, 1, 130−139. (In Slovak with English abstract.)
  23. Li, H., Sivapalan, M., 2011. Effect of spatial heterogeneity of runoff generation mechanisms on the scaling behavior of event runoff responses in a natural river basin. Water Resour. Res., 47, Article No. W00H08.10.1029/2010WR009712
  24. Ma, D.H., Shao, M.A., 2008. Simulating infiltration into stony soils with a dual-porosity model. Eur. J. Soil Sci., 59, 950–959.10.1111/j.1365-2389.2008.01055.x
  25. Šimůnek, J., van Genuchten, M.T, 1996. Estimating unsaturated soil hydraulic properties from tension disc infiltrometer data by numerical inversion. Water Resour. Res., 32, 2683–2696.10.1029/96WR01525
  26. Šimůnek, J., Wendroth, O., van Genuchten, M.T, 1998. A parameter estimation analysis of the evaporation method for determining soil hydraulic properties. Soil Sci. Soc. Am. J., 62, 894–905.10.2136/sssaj1998.03615995006200040007x
  27. Šimůnek, J., van Genuchten, M.T., Šejna, M., 2008. Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone J., 7, 587–600.10.2136/vzj2007.0077
  28. Šimůnek, J., Šejna, M., Saito, H., Sakai, M., van Genuchten, M.T., 2013. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, Version 4.17. Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA, 308 p.
  29. Tesař, M., Šír, M., Syrovátka, O., Pražák, J., Lichner, Ľ., Kubík, F., 2001. Soil water regime in head water regions - observation, assessment and modelling. J. Hydrol. Hydromech., 49, 6, 355–406.
  30. Tromp-van Meerveld, H.J., McDonnell, J.J., 2006. Threshold relations in subsurface stormflow: 2. The fill and spill hypothesis. Water Resour Res., 42, W02411. DOI: 10.1029/2004WR003800.10.1029/2004WR003800
  31. van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 987–996.10.2136/sssaj1980.03615995004400050002x
  32. Wegehenkel, M., Wagner, A., Amoriello, T., Fleck, S., Messenburg, H., 2017. Impact of stoniness correction of soil hydraulic parameters on water balance simulations of forest plots. J. Plant Nutr. Soil Sci., 180, 71–86.10.1002/jpln.201600244
DOI: https://doi.org/10.2478/johh-2020-0012 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 144 - 154
Submitted on: Dec 10, 2019
Accepted on: Mar 1, 2020
Published on: May 26, 2020
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Babar Mujtaba, Hana Hlaváčiková, Michal Danko, João L.M.P. de Lima, Ladislav Holko, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.