Have a personal or library account? Click to login
Analysis of changes in hydrological cycle of a pristine mountain catchment. 1. Water balance components and snow cover Cover

Analysis of changes in hydrological cycle of a pristine mountain catchment. 1. Water balance components and snow cover

Open Access
|May 2020

References

  1. Bartík, M., Holko, L., Jančo, M., Škvarenina, K., Danko, M., Kostka, Z., 2019. Influence of mountain spruce forest dieback on snow accumulation and melt. J. Hydrol. Hydromech., 67, 2019, 1, 59–69. DOI: 10.2478/johh-2018-0022.10.2478/johh-2018-0022
  2. Baker, D.B., Richards, P.R., Loftus, T.T., Kramer, J.W., 2004. A new flashiness index: characteristics and applications to Midwestern Rivers and streams. Journal of the American Water Resources Association, 4, 503–522.10.1111/j.1752-1688.2004.tb01046.x
  3. Bičárová, S., Holko, L., 2013. Changes of characteristics of daily precipitation and runoff in the High Tatra Mountains, Slovakia over the last fifty years. Contributions to Geophysics and Geodesy, 43, 2, 157–177.10.2478/congeo-2013-0010
  4. Blöschl, G. et al., 2019. Twenty-three Unsolved Problems in Hydrology (UPH) – a community perspective, Hydrological Sciences Journal, 64. DOI: 10.1080/02626667.2019.1620507.10.1080/02626667.2019.1620507
  5. Briedoň. V., Chomicz, K., Konček, M., 1974. Snow conditions. In: Konček, M. (Ed.): Klíma Tatier. Slovenská akadémia vied, pp. 537–600. (In Slovak.)
  6. Buishand, T.A., 1984. Tests for detecting a shift in the mean of hydrological time series. J. Hydrol., 73, 51–69. https://doi.org/10.1016/0022-1694(84)90032-5.10.1016/0022-1694(84)90032-5
  7. Conte, L.Ch., Bayer, D.M., Bayer, F.M., 2019. Bootstrap Pettitt test for detecting change points in hydroclimatological data: case study of Itaipu hydroelectric plant, Brazil. Hydrological Sciences Journal, 64, 1312–1326. DOI: 10.1080/02626667.2019.1632461.10.1080/02626667.2019.1632461
  8. Chiverton, A., Hannaford, J., Holman, I.P., Corstanje, R., Prudhomme, C., Hess, T.M., Bloomfield, J.P., 2015. Using variograms to detect and attribute hydrological change. Hydrol. Earth Syst. Sci., 19, 2395–2408. DOI: 10.5194/hess-19-2395-2015.10.5194/hess-19-2395-2015
  9. Danko, M., 2014. Reconstruction of extreme flood wave, 16th May 2014, Jalovecký Creek catchment. Acta Hydrologica Slovaca, 15, 2, 298–307. (In Slovak.)
  10. Danko, M., Holko, L., Kostka, Z., Tachecí, P., 2015. Simulation of snow water equivalent, snowmelt rate and runoff in mountain catchment during winter period. Acta Hydrologica Slovaca, 16, 1, 42–50. (In Slovak.)
  11. Daubechies, I., Mallat, S., Willsky, A., 1992. Special issue on wavelet transforms and multiresolution signal analysis. IEEE Trans. Information Theory, 38, 2, 528–531.
  12. Eckhardt, K., 2005. How to construct recursive digital filters for baseflow separation. Hydrological Processes, 19, 507–515.10.1002/hyp.5675
  13. Fongers, D., Manning, K., Rathbun, J., 2007. Application of the Richards-Baker Flashiness Index to Gage Michigan rivers and streams. DEQ Michigan’s Nonpoint Source Program, 102 p.
  14. Górnik, M., 2020. Changing trends of river flows in the Upper Vistula basin (East-Central Europe). Acta Geophysica, https://doi.org/10.1007/s11600-020-00400-910.1007/s11600-020-00400-9
  15. Górnik, M., Holko, L., Pociask-Karteczka, J., Bičárová, S., 2017. Variability of precipitation and runoff in the entire High Tatra Mountains in the period 1961-2010. Prace Geograficzne, zeszyt 151, 2017, 53–74. DOI: 10.4467/20833113PG.17.022.8034.10.4467/20833113PG.17.022.8034
  16. Hlaváčiková, H., Holko, L., Danko, M., Novák, V., 2019. Estimation of macropore flow characteristics in stony soils of a small mountain catchment. Journal of Hydrology, 574, 1176–1187.10.1016/j.jhydrol.2019.05.009
  17. Holko, L., Hlavčo, J., Kostka, Z., 2014. Spatial distribution of precipitation in a mountain catchment. Acta Hydrologica Slovaca, 15, 1, 102–109. (In Slovak.)
  18. Holko, L., Kostka, Z., 2008. Hydrological characteristics of snow cover in the Western Tatra Mountains in winters 1987-2008. Folia Geographica, series Geographica Physica, 39, 63–77.
  19. Holko, L., Škvarenina, J., Kostka, Z., Frič, M., Staroň, J., 2009. Impact of spruce forest on rainfall interception and seasonal snow cover evolution in the Western Tatra Mountains, Slovakia. Biologia, 64, 3, 594–599. DOI: 10.2478/s11756-009-0087-6.10.2478/s11756-009-0087-6
  20. Holko, L., Španková, D., 2014. Baseflow in the mountain catchment of the Jalovecký Creek in hydrological years 1988-2013. Acta Hydrologica Slovaca, 15, 2, 229–237. (In Slovak.)
  21. Holko, L., Danko, M., Sleziak, P., 2020. Analysis of changes in hydrological cycle of a pristine mountain catchment. 2. Isotopic data, trend and attribution analyses. Journal of Hydrology and Hydromechanics, 68, 2, 192–199.10.2478/johh-2020-0011
  22. Hurst, H.E., 1951. Long-term storage capacity of reservoirs. Trans. Amer. Soc. Civil Eng., 116, 770–808.10.1061/TACEAT.0006518
  23. Klemeš, V., 1974. The Hurst phenomenon: A puzzle? Water Resources Research, 10, 4, 675–688. https://doi.org/10.1029/WR010i004p00675.10.1029/WR010i004p00675
  24. Klemeš, V., 2000. Geophysical Time Series and Climatic Change (A Sceptic’s View). In: Common sense and other heresies: selected papers on hydrology and water resources engineering. Canadian Water Resources Association, pp. 311–331.10.4296/cwrj2501108
  25. Kohler, T., Maselli, D., 2009. Mountains and Climate Change - From Understanding to Action. Published by Geographica Bernensia with the support of the Swiss Agency for Development and Cooperation (SDC), and an international team of contributors, Bern, 75 p.
  26. Kostka, Z., Holko, L., 1997. Soil moisture and runoff generation in small mountain basin. Institute of Hydrology SAS. Slovak Committee for Hydrology, Bratislava, 84 p.
  27. Koutsoyiannis, D., 2003. Climate change, the Hurst phenomenon, and hydrological statistics. Hydrological Sciences Journal, 48, 1, 3–24. DOI: 10.1623/hysj.48.1.3.43481.10.1623/hysj.48.1.3.43481
  28. Krajčí, P., Danko, M., Hlavčo, J., Kostka, Z., Holko, L., 2016. Experimental measurements for improved understanding and simulation of snowmelt events in the Western Tatra Mountains. J. Hydrol. Hydromech., 64, 4, 316–328. DOI: 10.1515/johh-2016-0038.10.1515/johh-2016-0038
  29. Kundzewicz, Z.W., Robson, A., 2004. Change detection in hydrological records – a review of the methodology. Hydrological Sciences Journal, 49, 1, 7–19.10.1623/hysj.49.1.7.53993
  30. Lapin, M., 2013. Which temperature standard is the best for practical use? http://www.milanlapin.estranky.sk/clanky/coje-to-klimaticky-normal--/; assessed on April 4, 2019.
  31. Lettenmaier, D.P., Burges, S.J., 1978. Climate change: Detection and its impact on hydrologic design. Water Resources Research, 14, 4, 679–687. https://doi.org/10.1029/WR014i004p0067910.1029/WR014i004p00679
  32. Lundquist, J.D., Lott, F., 2008. Using inexpensive temperature sensors to monitor the duration and heterogeneity of snowcovered areas, Water Resour. Res., 44, W00D16. DOI: 10.1029/2008WR007035.10.1029/2008WR007035
  33. Mastrotheodoros, T., Pappas, C., Molnar, P., Burlando, P., Manoli, G., Parajka, J., Rigon, R., Szeles, B., Bottazzi, M., Hadjidoukas, P., Fatichi, S., 2020. More green and less blue water in the Alps during warmer summers. Nature Climate Change, 10, 155–161.10.1038/s41558-019-0676-5
  34. Merz, B., Vorogushyn, S., Uhlemann, S., Delgado, J., Hundecha, Y., 2012. HESS Opinions “More efforts and scientific rigour are needed to attribute trends in flood time series”, Hydrol. Earth Syst. Sci., 16, 1379–1387. DOI: 10.5194/hess-16-1379-2012.10.5194/hess-16-1379-2012
  35. Parajka, J., Haas, P., Kirnbauer, R., Jansa, J., Blöschl, G., 2012. Potential of time-lapse photography of snow for hydrological purposes at the small catchment scale. Hydrol. Process., 26, 3327–3337. DOI: 10.1002/hyp.8389.10.1002/hyp.8389
  36. Parajka, J., Holko, L., Kostka, Z., Blöschl, G., 2012. MODIS snow cover mapping accuracy in a small mountain catchment – comparison between open and forest sites. Hydrol. Earth Syst. Sci., 16, 2365–2377. DOI:10.5194/hess-16-2365-2012.10.5194/hess-16-2365-2012
  37. Pekárová, P., Pekár, J., 2007. Teleconnections of Inter-Annual Streamflow Fluctuation in Slovakia with Arctic Oscillation, North Atlantic Oscillation, Southern Oscillation, and Quasi-Biennial Oscillation Phenomena. Advances in Atmospheric Sciences, 24, 4, 655–663.10.1007/s00376-007-0655-z
  38. Pettitt, A.N., 1979. A non-parametric approach to the change point problem. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28, 2, 126–135. DOI: 10.2307/2346729.10.2307/2346729
  39. Pišoft, P., Kalvová, J., Brázdil, R., 2004. Cycles and trends in the Czech temperature series uning wavelet transforms. Int. J. Climatol., 24, 1661–1670.10.1002/joc.1095
  40. Qian, K., Wang, X.-S., Lv, J., Wan, L., 2014. The wavelet correlative analysis of climatic impacts on runoff in the source region of Yangtze River, in China. Int. J. Climatol., 34, 2019–2032.10.1002/joc.3818
  41. Sabo, M., 2012. How to analyze time series with wavelet transform. Acta Hydrologica Slovaca, 13, 1, 233–241. (In Slovak.)
  42. Sharma, S., Swayne, D.W., Obimbo, C., 2016. Trend analysis and change point techniques: a survey. Energ. Ecol. Environ., 1, 3, 123–130. DOI 10.1007/s40974-016-0011-1.10.1007/s40974-016-0011-1
  43. Szolgayova, E., Parajka, J., Blöschl, G., Bucher, C., 2014. Long term variability of the Danube River flow and its relation to precipitation and air temperature. Journal of Hydrology, 519, 871–880.10.1016/j.jhydrol.2014.07.047
  44. The Nature Conservancy, 2009. Indicators of Hydrologic Alteration Version 7.1 User’s manual.
  45. Tian, H., Cazelles, B., 2013. WaveletCo: Wavelet Coherence Analysis. http://www2.uaem.mx/rmirror/web/packages/WaveletCo/WaveletCo.pdf.
  46. Torrence, C., Compo, G.P., 1998. A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society, 79, 1, 61–78.10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
  47. Xiong, L., Jiang, C., Xu, C.-Y., Yu, K.-X., Guo, S., 2015. A framework of changepoint detection for multivariate hydrological series, Water Resour. Res., 51, 8198–8217. DOI: 10.1002/2015WR017677.10.1002/2015WR017677
  48. Zégre, N., Skaugset, A. E., Som, N.A., McDonnell, J.J., Ganio, L.M., 2010. In lieu of the paired catchment approach: Hydrologic model change detection at the catchment scale. Water Resour. Res., 46, W11544. DOI: 10.1029/2009WR008601.10.1029/2009WR008601
  49. Zhang, D., Hong, H., Zhang, Q., Li, X., 2015. Attribution of the changes in annual streamflow in the Yangtze River basin over the past 146 years. Theor. Appl. Climatol., 119, 323–332.10.1007/s00704-014-1121-3
DOI: https://doi.org/10.2478/johh-2020-0010 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 180 - 191
Submitted on: Sep 30, 2019
Accepted on: Feb 21, 2020
Published on: May 26, 2020
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Ladislav Holko, Patrik Sleziak, Michal Danko, Svetlana Bičárová, Joanna Pociask-Karteczka, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.