Have a personal or library account? Click to login
Simultaneous determination of wettability and shrinkage in an organic residue amended loamy topsoil Cover

Simultaneous determination of wettability and shrinkage in an organic residue amended loamy topsoil

Open Access
|May 2020

References

  1. Alaoui, A., Lipiec, J., Gerke, H.H., 2011. A review of the changes in the soil pore system due to soil deformation: A hydrodynamic perspective. Soil Till Res., 115–116, 1–15.10.1016/j.still.2011.06.002
  2. Bachmann, J., Woche, S.K., Goebel, M.O., 2013. Small-scale contact angle mapping on undisturbed soil surfaces. J. Hydrol. Hydromech., 61, 3–8.10.2478/johh-2013-0002
  3. Bebej, J., Homolák, M., Orfánus, T., 2017. Interaction of Brilliant Blue dye solution with soil and its effect on mobility of compounds around zones of preferential flows at spruce stand. Dent. Eur. For. J., 63, 79–90. DOI: 10.1515/forj-2017-0020.10.1515/forj-2017-0020
  4. Beck-Broichsitter, S., Gerke, H.H., Horn, R., 2018a. Shrinkage characteristics of boulder marl as sustainable mineral liner material of landfill capping systems. Sustainability, 10, 4025.10.3390/su10114025
  5. Beck-Broichsitter, S., Fleige, H., Horn, R., 2018b. Compost quality and its function as a soil conditioner of recultivation layers – a critical review. Int. Agrophys., 32, 11–18.10.1515/intag-2016-0093
  6. Beck-Broichsitter, S., Fleige, H., Gerke, H.H., Horn, R., 2020. Effect of artificial soil compaction in landfill capping systems on anisotropy of air-permeability. J. Plant. Nutr. Soil Sci., 1–11. DOI: 10.1002/jpln.201900281.10.1002/jpln.201900281
  7. Braudeau, E., Frangi, J.P., Mothar, R.H., 2004. Characterizing non-rigid dual porosity structured soil medium using its characteristic SC. Soil Sci. Soc. Am. J., 68, 359–370.10.2136/sssaj2004.3590
  8. Chen, P., Ning, L., 2018. Generalized equation for soil shrinkage curve. J. Geotech. Geoenviron., 144, 8, 04018046.10.1061/(ASCE)GT.1943-5606.0001889
  9. FAO, 2006. Guidelines for soil profile description. 4th edition. Land and water development division. Rome, Italy.
  10. Fér, M., Leue, M., Kodešová, R., Gerke, H.H., Ellerbrock, R.H., 2016. Droplet infiltration dynamics and soil wettability related to soil organic matter of soil aggregate coatings and interiors. J. Hydrol. Hydromech., 64, 111–120.10.1515/johh-2016-0021
  11. Gerke, H.H., 2006. Preferential flow descriptions for structured soils. J. Plant Nutr. Soil Sci. 169, 382–400. DOI: 10.1002/jpln.200521955.10.1002/jpln.200521955
  12. Gerke, H.H., 2012. Macroscopic representation of the interface between flow domains in structured soil. Vadose Zone J., 11, 3. DOI: 10.2136/vzj2011.0125.10.2136/vzj2011.0125
  13. Goebel, M.-O., Woche, S.K., Bachmann, J., Lamparter, A., Fischer, W.R., 2007. Significance of wettability-induced changes in microscopic water distribution for soil organic matter decomposition. Soil Sci. Soc. Am. J., 71, 5, 1593–1599.10.2136/sssaj2006.0192
  14. Hallett, P.D., Nuna, N., Douglas, J.T., Young, I.M., 2004. Millimeter-scale spatial variability in soil water sorptivity: scale, surface elevation, and subcritical repellency effects. Soil Sci. Soc. Am. J., 68, 352–358.10.2136/sssaj2004.3520
  15. Hartge, K.H., Horn, R., 2016. Essential Soil Physics. In: Horton, R., Horn, R., Bachmann, J., Peth, S. (Eds.): An introduction to soil processes, structure, and mechanics. Schweizerbart Science Publishers, Stuttgart, Germany, 391 p.
  16. Hasler, M., Horton, L.A., 2008. Multiple contrast tests in the presence of heteroscedasticity. Biometrical J., 50, 793–800. DOI: 10.13140/RG.2.2.29821.36320.10.1002/bimj.200710466
  17. Horn, R., Peng, X., Fleige, H., Dörner, J., 2014. Pore rigidity in structured soils – only a theoretical boundary condition for hydraulic properties? J. Soil Sci. Plant Nutr., 60, 3–14.10.1080/00380768.2014.886159
  18. IUSS Working Group WRB, 2014. World reference base for soil resources 2006. 2nd ed. World Soil Resources Reports No. 103. FAO, Rome.
  19. Jasinska, E., Wetzel, H., Baumgartl, T., Horn, R., 2006. Heterogeneity of physico-chemical properties in structured soils and its consequences. Pedosphere, 16, 284–296.10.1016/S1002-0160(06)60054-4
  20. Kodešová, R., Jirků, V., Kodeš, V., Mühlhanselová, M., Nikodem, A., Žigová, A., 2011. Soil structure and soil hydraulic properties of Haplic Luvisol used as arable land and grassland. Soil Till. Res., 1112, 154–161.10.1016/j.still.2010.09.007
  21. Kodešová, R., Němeček, K., Kodeš, V., Žigová, A., 2012. Using dye tracer for visulization of preferential flow at macro- and microscales. Vadose Zone J., 11, 1–10.10.2136/vzj2011.0088
  22. Köhne J.M., Köhne, S., Simunek, J., 2009. A review of model applications for structured soils: b) Pesticide transport. J. Cont. Hydrol., 104, 36–60. DOI: 10.1016/j.jconhyd.2008.10.003.10.1016/j.jconhyd.2008.10.00319012993
  23. Lamparter, A., Deurer, M., Bachmann, J., Duijnisveld, W.H.M., 2006. Effect of subcritical hydrophobicity in a sandy soil on water infiltration and mobile water content. J. Plant Nutr. Soil Sci., 169, 1, 38–46.10.1002/jpln.200521743
  24. Leue, M., Gerke, H., Godow, S.C., 2015. Droplet infiltration and organic matter composition of intact crack and biopore surfaces from clay-illuvial horizons. J. Plant Nutr. Soil Sci., 178, 250–260.10.1002/jpln.201400209
  25. Lu, N., Dong, Y., 2016. Correlation between soil shrinkage curve and water retention characteristics. J. Geotech. Geoenviron., 144, 8, 04017054.10.1061/(ASCE)GT.1943-5606.0001741
  26. Ojeda, G., Mattana, S., Àvila, A., Alcañiz, J.M., Volkmann, M., Bachmann, J., 2015. Are soil-water functions affected by biochar application? Geoderma, 249–250, 1–11.10.1016/j.geoderma.2015.02.014
  27. Peng, X., Horn, R., 2005. Modeling soil shrinkage curve across a wide range of soil types. Soil Sci. Soc. Am. J., 69, 3, 584–592.10.2136/sssaj2004.0146
  28. Peng, X., Horn, R., 2013. Identifying six types of soil shrinkage curves from a large set of experimental data. Soil Sci. Soc. Am. J., 77, 372–381.10.2136/sssaj2011.0422
  29. R Development Core Team, 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  30. Risberg, K., Cederlund, H., Pell, M., Arthurson, V., Schnürer, A., 2017. Comparative characterization of digestate versus pig slurry and cow manure – chemical composition and effects on soil microbial activity. Waste Manage., 61, 529–538.10.1016/j.wasman.2016.12.016
  31. Ruggieri, L., Artola, A., Gea, T., Sanchez, A., 2008. Biodegradation of animal fats in a co-composting process with wastewater sludge. Int. Biodeter Biodegr., 62, 3, 297–303.10.1016/j.ibiod.2008.02.004
  32. Seyfarth, M., Holldorf, J., Pagenkemper, S.K., 2012. Investigation of shrinkage induced changes in soil volume with laser scanning technique and automated soil volume determination - A new approach/method to analyze pore rigidity limits. Soil Till. Res., 125, 105–108.10.1016/j.still.2012.06.012
  33. Voelkner, A., Holthusen, D., Horn, R., 2015. Influence of homogenized residues of anaerobic physicochemical properties of differently textured soils. J. Plant Nutr. Soil Sci., 178, 261–269.10.1002/jpln.201400138
  34. Vogelmann, E.S., Reichert, J.M., Prevedello, J., Consensa, C.O.B., Oliveira, A.É., 2013. Threshold water content beyond which hydrophobic soil become hydrophilic. The role of soil texture and organic matter content. Geoderma, 209–210, 177–187.10.1016/j.geoderma.2013.06.019
  35. Wang, X.Y., Zhao, Y., Horn, R., 2010. Soil wettability as affected by soil characteristics and land use. Pedosphere, 20, 43–54.10.1016/S1002-0160(09)60281-2
DOI: https://doi.org/10.2478/johh-2020-0007 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 111 - 118
Submitted on: Oct 14, 2019
Accepted on: Jan 31, 2020
Published on: May 26, 2020
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Steffen Beck-Broichsitter, Saskia Ruth, Richard Schröder, Heiner Fleige, Horst H. Gerke, Rainer Horn, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.