Have a personal or library account? Click to login
The L-moment based regional approach to curve numbers for Slovak and Polish Carpathian catchments Cover

The L-moment based regional approach to curve numbers for Slovak and Polish Carpathian catchments

Open Access
|May 2020

References

  1. Adamowski, K., 2000. Regional analysis of annual maximum and partial duration flood data by nonparametric and L-moment methods. J. Hydrol., 229, 219–231.10.1016/S0022-1694(00)00156-6
  2. Ajmal, M., Wassem, M., Ahn, J.-H., Kim, T.-W., 2015. Improved runoff estimation using event-based rainfall-runoff models. Water Resour. Manag., 29, 6, 1995–2010. http://dx.doi.org/10.1007/s11269-015-0924-z.10.1007/s11269-015-0924-z
  3. Arnold, J.G., Williams, J.R., Srinivasan, R., King, K.W., 1995. SWAT: Soil Water Assessment Tool. Texas Agricultural Experiment Station: Blackland Research Center, Texas A&M University, Temple, TX, USA.
  4. Baltas, E.A., Dervos, N.A., Mimikou, M.A., 2007. Research on the initial abstraction – storage ratio and its effect on hydrograph simulation at a watershed in Greece. Hydrol. Earth Syst. Sci. Discuss., 4, 2169–2204. DOI: 10.5194/hessd-4-2169-2007.10.5194/hessd-4-2169-2007
  5. Banasik, K., Ignar, S., 1983. Estimation of effective rainfall using the SCS method on the base of measured rainfall and runoff. Rev. Geophys., XXVII (3–4), 401–408. (In Polish.)
  6. Banasik, K., Madeyski, M., Więzik, B., Woodward, D.E. 1997. Applicability of curve number technique for runoff estimation from small Carpathian catchments. In: Proceedings of the International Conference on Developments of Hydrology of Mountainous Areas. Slovak Committee of Hydrology, Stara Lesna, Sept. 14–16, 1994, pp. 240–242. IHP-Projects, H-5-5/H-5-6, Unesco, Paris. https://unesdoc.unesco.org/ark:/48223/pf0000109610.
  7. Banasik, K., Woodward, D., 2010. Empirical determination of runoff curve number for a small agricultural watershed in Poland. In: Proc. 2nd Joint Federal Interagency Conference, Las Vegas: NV, USA, June 27–July 1, 2010, pp. 1–11. http://acwi.gov/sos/pubs/2ndJFIC/Contents/10E_Banasik_28_02_10.
  8. Banasik, K., Woodward, D.E., Hawkins, R., 2014. Curve numbers for two agro-forested watersheds. In: Proceedings of the World Environmental and Water Resources Congress “Water Without Borders”, ASCE, Portland: Oregon, USA, June 1–5, 2014, pp. 2235–2246. Abstract available at: https://ascelibrary.org/doi/10.1061/9780784413548.223.10.1061/9780784413548.223
  9. Banasik, K., Rutkowska, A., Kohnová, S., 2014. Retention and curve number variability in a small agricultural catchment: the probabilistic approach. Water, 6, 5, 1118–1133.10.3390/w6051118
  10. Bartlett, M.S., Parolari, A.J., McDonnell, J.J., Porporato, A., 2016. Beyond the SCS-CN method: A theoretical framework for spatially lumped rainfall-runoff response. Water Resour. Res., 52, 4608–4627. DOI: 10.1002/2015WR018439.10.1002/2015WR018439
  11. Bartlett, M.S., Parolari, A.J., McDonnell, J.J., Porporato, A., 2017. Reply to comment by Fred L. Ogden et al. on “Beyond the SCS-CN method: A theoretical framework for spatially lumped rainfall-runoff response.” Water Resour. Res., 53, 6351–6354. DOI: 10.1002/2017WR020456.10.1002/2017WR020456
  12. Bingner, R.L., Theurer, F.D., 2005. AnnAGNPS Technical Processes: Documentation Version 3.2. USDA-ARS, National Sedimentation Laboratory, Oxford, Miss., USA.
  13. Bondelid, T., McCuen, R., Jackson, T., 1982. Sensitivity of SCS Models to curve number variation. J. Am. Water Resour. As., 18, 1, 111–116.10.1111/j.1752-1688.1982.tb04536.x
  14. Burn, D.H., Goel, N.K., 2000. The formation of groups for regional flood frequency analysis. Hydrolog. Sci. J., 45, 97–112. DOI: 10.1080/02626660009492308.10.1080/02626660009492308
  15. Castellarin, A., Burn, D.H., Brath, A., 2001. Assessing the effectiveness of hydrological similarity measures for flood frequency analysis. J. Hydrol., 241, 270–285.10.1016/S0022-1694(00)00383-8
  16. Cazier, D.J., Hawkins, R.H., 1984. Regional application of the curve number method. In: Proceedings of Specialty Conference, Irrigation and Drainage Division, American Society of Civil Engineers, Flagstaff, AZ, abstract, p. 710.
  17. Dalrymple, T., 1960. Flood Frequency Analyses, Manual of Hydrology. Water Supply Paper 1543-A, U.S. Geological Survey, Reston, USA.
  18. Durán-Barroso, P., González, J., Valdés, J.B., 2017. Sources of uncertainty in the NRCS CN model: recognition and solutions. Hydrol. Process., 31, 22, 3898–3906. http://dx.doi.org/10.1002/hyp.1130510.1002/hyp.11305
  19. Elhakeem, M., Papanicolaou, A.N., 2009. Estimation of the runoff curve number via direct rainfall simulator measurements in the state of Iowa, USA. Water Resour. Manag., 23, 12, 2455–2473. http://dx.doi.org/10.1007/s11269-008-9390-1.10.1007/s11269-008-9390-1
  20. Gaál, L., Kohnová, S., Szolgay, J., 2013. Regional flood frequency analysis in Slovakia: Which pooling approach suits better? In: Klijn, Schweckendiek (Eds): Comprehensive Flood Risk Management: Research for policy and practice. pp. 27–30.10.1201/b13715-7
  21. Gaswirth, J.L., Gel, Y.R., Miao, W., 2009. The impact of Levene’s test of equality of variances on statistical theory and practice. Stat. Sci., 24, 3, 343–360. DOI: 10.1214/09-STS301.10.1214/09-STS301
  22. Geetha, K., Mishra, S., Eldho, T., Rastogi, A., Pandey, R., 2007. Modifications to SCS-CN method for long-term hydrologic simulation. J. Irrig. Drain. Eng., 133, 5, 475–486.10.1061/(ASCE)0733-9437(2007)133:5(475)
  23. Hawkins, R., 1973. Improved prediction of storm runoff in mountain watersheds. J. Irrig. Drain. Div., 99, 4, 519–523.10.1061/JRCEA4.0000957
  24. Hawkins, R., 1979. Runoff Curve Numbers from Partial Area Watersheds. J. Irrig. Drain. Div., 105, 4, 375–389.10.1061/JRCEA4.0001275
  25. Hawkins, R., 1993. Asymptotic determination of curve numbers from data. J. Irrig. Drain. Div., 119, 334–345.10.1061/(ASCE)0733-9437(1993)119:2(334)
  26. Hawkins, R.H., Khojeini, A.V., 2000. Initial abstraction and loss in the curve number method. Proc. of Arizona Hydrological Society, Tucson, Arizona.
  27. Hawkins, R.H., Hjelmfelt, Jr. A.T., Zevenbergen, A.W., 1985. Runoff probability, storm depth, and Curve Numbers. J. Irrig. Drain. Div., 111, 4, 330–340.10.1061/(ASCE)0733-9437(1985)111:4(330)
  28. Hawkins, R.H., Ward, T.J., Woodward, D.E., van Mullem, J.A. (Eds.), 2009. Curve Number Hydrology: State of the Practice. American Society of Civil Engineers, Reston, VA, USA.10.1061/9780784410042
  29. Hitchcock, D.R., Jayakaran, A.D., Loflin, D.R., Williams, T.M., Amatya, D.M., 2013. Curve number derivation for watersheds draining two headwater streams in Lower Coastal Plain of South Carolina, USA. J. Am. Water. Resor. As., 49, 1284–1295.10.1111/jawr.12084
  30. Hjelmfelt, A., 1991. Investigation of curve number procedure. J. Hydraul. Eng., 117, 6, 725–737.10.1061/(ASCE)0733-9429(1991)117:6(725)
  31. Hjelmfelt Jr., A.T., Kramer, L.A., Burwell, R.E., 1983. Curve numbers as random variables. In: Proceedings of the Specialty Conference on Advances in Irrigation and Drainage: Surviving External Pressures. Jackson, Wy, USA, pp. 365–370.
  32. Hosking, J.R.M., Wallis, J.R., 1990. L-moments: analysis and estimation of distributions using linear combinations of order statistics. J. R. Stat. Soc. B., 52, 1, 105–124.10.1111/j.2517-6161.1990.tb01775.x
  33. Hosking, J.R.M., Wallis, J.R., 1997. Regional Frequency Analysis. An Approach Based on L-Moments. Cambridge University Press, Cambridge, UK, 244 p.10.1017/CBO9780511529443
  34. Hosking, J.R.M., 2019. Regional frequency analysis using Lmoments. R package, version 3.2. URL: https://cran.rproject.org/web/packages/lmomRFA/lmomRFA.pdf
  35. Jiang, R., 2001. Investigation of runoff curve number initial abstraction ratio. MS thesis. Watershed Management, University of Arizona, Tucson, AZ, 120 p.
  36. Jeon, J.-H., Lim, K. J., Engel, B.A., 2014. Regional calibration of CSC-CN L-THIA model: application for ungauged basins. Water, 6, 1339–1359. DOI: 10.3390/w6051339.10.3390/w6051339
  37. Karabová, B., Marková, R., 2013. Testing of regionalization of SCS-CN parameters in the Upper Hron River region, Slovakia. Adolf Patera Seminar 2013, Prague, Czech Republic.
  38. Kochanek, K., Strupczewski, W.G., Bogdanowicz, E., 2012. On seasonal approach to flood frequency modelling. Part II: flood frequency analysis of Polish rivers. Hydrol. Process., 26, 71–73. DOI: 10.1002/hyp.8178.10.1002/hyp.8178
  39. Kohnová, S., Szolgay, J., Solin, L., Hlavčova, K., 2006. Regional Methods for Prediction in Ungauged Basins. Case Studies. KEY Publishing s.r.o. in cooperation with the Slovak Committee for Hydrology, Bratislava.
  40. Kruskal, W.H., Wallis, W.A., 1952. Use of ranks in onecriterion variance analysis. J. Am. Stat. Assoc., 47, 260, 583–621.10.1080/01621459.1952.10483441
  41. Leonard, R.A., Knisel, W.G., Still, D.A., 1987. GLEAMS: Groundwater loading effects of agricultural management systems. Trans. ASAE, 30, 5, 1403–1418.10.13031/2013.30578
  42. Levene, H., 1960. Robust tests for equality of variances. In: Olkin, I., Hotteling, H. et al. (Eds.): Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling. Stanford University Press, pp. 278–292.
  43. Merz, R., Blöschl, G., 2005. Flood frequency regionalization - spatial proximity vs. catchment attributes. J. Hydrol., 302, 1–4, 283–306.10.1016/j.jhydrol.2004.07.018
  44. McCuen, R., 2002. Approach to confidence interval estimation for curve numbers. J. Hydraul. Eng., 7, 1, 43–48.10.1061/(ASCE)1084-0699(2002)7:1(43)
  45. Mishra, S.K., Tyagi, J.V., Singh, V.P., Singh, R., 2006. SCS-CNbased modeling of sediment yield. J. Hydrol., 324, 301–322.10.1016/j.jhydrol.2005.10.006
  46. Mishra, B.K., Takara, K., Tachikawa, Y., 2009. Integrating the NRCS runoff curve number in delineation of hydrologic homogeneous regions. J. Hydrol. Eng., 14, 10, 1091–1097.10.1061/(ASCE)HE.1943-5584.0000101
  47. Mockus, V., 1972. Chapter 21: Design hydrographs. In: McKeever, V., Owen, W., Rallison, R. (Eds.): National Engineering Handbook, Section 4, Hydrology. U.S. Department of Agriculture, Soil Conservation Service, Washington, DC.
  48. R Core Team, 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
  49. Rutkowska, A., Kohnová, S., Banasik, K., Szolgay, J., Karabová, B., 2015. Probabilistic properties of a curve number: a case study for small Polish and Slovak Carpathian Basins. J. Mt. Sci., 12, 3, 533–548. https://doi.org/10.1007/s11629-014-3123-010.1007/s11629-014-3123-0
  50. Rutkowska, A., Żelazny, M., Kohnová, S., Łyp, M., Banasik, K., 2010. Regional L-moment-based flood frequency analysis in the Upper Vistula River basin, Poland. Pure Appl. Geophys., 174, 2, 701–721. DOI: 10.1007/s00024-016-1298-810.1007/s00024-016-1298-8
  51. Sahu, R.K., Mishra, S.K., Eldho, T.I., 2010. An improved AMC-coupled runoff curve number model. Hydrol. Process., 24, 20, 2834–2839.10.1002/hyp.7695
  52. Scheffé, H., 1959. The Analysis of Variance. Wiley, New York. 477 p.
  53. Shi, Z.H., Chen, L.-D., Fang, N.-F., Qin, D.-F., CAI, C.-F., 2009. Research on the SCS-CN initial abstraction ratio using rainfallrunoff event analysis in the Three Gorges Area, China. Catena, 77, 1, 1–7. http://dx.doi.org/10.1016/j.catena.2008.11.006.10.1016/j.catena.2008.11.006
  54. Shapiro, S.S, Wilk, M.B., 1965. An Analysis of Variance Test for Normality, Biometrica, 52, 3–4, 591–611.10.1093/biomet/52.3-4.591
  55. Soulis, K.X., Valiantzas, J.D., 2012. SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds - the two-CN system approach. Hydrol. Earth Syst. Sci. Discuss., 16, 1001–1015. DOI: 10.5194/hessd-8-8963-2011.10.5194/hessd-8-8963-2011
  56. Tedela, N.M., McCutcheon, S.C., Rasmussen, T.C., Tollner, E.W., 2008. Evaluation and Improvements of the Curve Number Method of Hydrological Analysis on Selected Forested Watersheds of Georgia. The University of Georgia, report submitted to Georgia Water Resources Institute. USA. Available at: http://water.usgs.gov/wrri/07grants/progress/2007GA143B.pdf (accessed on 6th February 2014).
  57. Ulrych, T.J., Velis, D.R., Woodbury, A.D., Sacchi, M.D., 2000. L-moments and C-moments. Stoch. Env. Res. Risk A., 14, 50–68.10.1007/s004770050004
  58. USDA, 2004. Estimation of direct runoff from storm rainfall. In: National Engineering Handbook, Chapter 10, part 630. Dept of Agriculture NRCS, Washington, DC, pp. 1–22.
  59. Verma, S., Verma, R.K., Mishra, S.K., Singh, A., Jayaraj, G.K., 2017. A revisit of NRCS-CN inspired models coupled with RS and GIS for runoff estimation. Hydrological Sciences Journal, 62, 12, 1891–1930. DOI: 10.1080/02626667.2017.133416610.1080/02626667.2017.1334166
  60. Viglione, A., 2018. nsRFA: Non-supervised Regional Frequency Analysis. R package version 0.7-14. https://cran.rproject.org/web/packages/nsRFA/nsRFA.pdf
  61. Wang, Q.J., 1996. Direct sample estimators of L moments. Water Resour. Res., 32, 3617–3619.10.1029/96WR02675
  62. Wałęga, A., Cupak, A., Amatya, D.M., Drożdżal, E., 2017. Comparison of direct outflow calculated by modified SCSCN methods for mountainous and highland catchments in upper Vistula Basin, Poland and lowland catchment in South Carolina, U.S.A. Acta Scientiarum Polonorum Formatio Circumiectus, 16, 1, 187–207.10.15576/ASP.FC/2017.16.1.187
  63. Węglarczyk, S., 2010. Statystyka w inżynierii środowiska (Statistics in Environmental Engineering). Politechnika Krakowska, Cracow, Poland, 376 p.
  64. Woodward, D.E., Hawkins, R.H., Jiang, R., Hjelmfelt Jr., A.T., Van Mullem, J.A., Quang, D.Q., 2003. Runoff curve number method: examination of the initial abstraction ratio. In: Bizier, P., DeBarry, P. (Eds.): Proceedings of the World Water & Environmental Resources Congress 2003 and Related Symposia, EWRI, ASCE, 23–26 June, 2003, Philadelphia, Pennsylvania, USA, p. 10. DOI: 101061/40685(2003)308.10.1061/40685(2003)308
  65. Yang, T., Xu, C.-Y., Shao, Q.-X., Chen, X., 2010. Regional flood frequency and spatial patterns analysis in the Pearl River Delta region using L-moments approach. Stochastic Environmental Research and Risk Assessment, 24, 165–182. DOI: 10.1007/s00477-009-0308-0.10.1007/s00477-009-0308-0
  66. Yuan, Y., Nie, W., McCutcheon, S.C., Taguas, E.V., 2014. Initial abstraction and curve number for semiarid watersheds in Southeastern Arizona. Hydrol. Process., 28, 3, 774–783. http://dx.doi.org/10.1002/hyp.959210.1002/hyp.9592
DOI: https://doi.org/10.2478/johh-2020-0004 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 170 - 179
Submitted on: Jul 30, 2019
Accepted on: Jan 12, 2020
Published on: May 26, 2020
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Silvia Kohnová, Agnieszka Rutkowska, Kazimierz Banasik, Kamila Hlavčová, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.