Have a personal or library account? Click to login
Equations for predicting interrill erosion on steep slopes in the Three Gorges Reservoir, China Cover

Equations for predicting interrill erosion on steep slopes in the Three Gorges Reservoir, China

Open Access
|Feb 2020

References

  1. Abrahams, A.D., Parsons, A.J., Luk, S.H., 1986. Field measurement of the velocity of overland flow using dye tracing. Earth Surf. Process Landf, 11, 653–657.10.1002/esp.3290110608
  2. An, J., Zheng, F., Lu, J., Li, G., 2012. Investigating the role of raindrop impact on hydrodynamic mechanism of soil erosion under simulated rainfall conditions. Soil Sci, 177, 8, 517–526.10.1097/SS.0b013e3182639de1
  3. Assouline, S., Ben-Hur, M., 2006. Effects of rainfall intensity and slope gradient on the dynamics of interrill erosion during soil surface sealing. Catena, 66, 211–220.10.1016/j.catena.2006.02.005
  4. Beasley, D.B., Huggins, L.F., 1982. ANSWERS user’s manual. Dep. of Agric. Eng., Purdue Univ., West Lafayette, IN.
  5. Bulygin, S.Y., Nearing, M.A., Achasov, A.B., 2002. Parameters of interrill erodibility in the WEPP model. Eurasion Soil Science, 35, 1237–1242.
  6. Cao, L.X., Zhang, K.L., Dai, H.L., Liang, Y., 2015. Modeling Interrill erosion on unpaved roads in the Loess Plateau of China. Land Degrad. Dev., 26, 8, 825–832.10.1002/ldr.2253
  7. Chaplot, V.A.M., Le Bissonnais, Y.L., 2003. Runoff features for interrill erosion at different rainfall intensities, slope lengths, and gradients in an agricultural loessial hillslope. Soil Science Society of America Journal, 67, 3, 844–851.10.2136/sssaj2003.8440
  8. De Roo, A.P.J., Wesseling, C.G., Cremers, N.H.D.T., Offermans, R.J.E., Ritsema, C.J., Van Oostindie, K., 1994. LISEM: a new physically-based hydrological and soil erosion model in a GIS-environment, theory and implementation. IAHS Publications – Series of Proceedings and Reports. International Association of Hydrological Sciences, vol. 224, pp. 439–448.
  9. Ding, W.F., Zhang, X.C., 2016. An evaluation on using soil aggregate stability as the indicator of interrill erodibility. J. Mt. Sci., 13, 5, 831–843.10.1007/s11629-015-3447-4
  10. Ding, W.F., Huang, C.H., 2017. Effects of soil surface roughness on interrill erosion processes and sediment particle size distribution. Geomorphology, 295, 801–810.10.1016/j.geomorph.2017.08.033
  11. Dunkerley, D., 2003. An optical tachometer for short-path measurement of flow speed in shallow overland flows: improved alternative to dye timing. Earth Surf. Process. Landforms, 28, 777–786.10.1002/esp.468
  12. Fan, J.C., Wu, M.F., 1999. Effects of soil strength, texture, slope steepness and rainfall intensity on interrill erosion of some soils in Taiwan. In: 10th International Soil Conservation Organization meeting, Purdue University, USDA-ARS National Soil Erosion Research Laboratory.
  13. Fang, H., Sun, L., Tang, Z., 2015. Effects of rainfall and slope on runoff, soil erosion and rill development: an experimental study using two loess soils. Hydrological Processes, 29, 11, 2649–2658.10.1002/hyp.10392
  14. Flanagan, D.C., Nearing, M.A. (Eds.), 1995. USDA-Water Erosion Prediction Project: Technical Documentation. NSERL Rep. No. 10. Natl. Soil Erosion Res. Lab., West Lafayette, IN.
  15. Foster, G.R., Meyer, L.D., 1975. Mathematical simulation of upland erosion by fundamental erosion mechanics. Present and prospective technology for predicting sediment yields and sources. ARS-S-40, USDA-ARS, U.S. Gov. Print. Office, Washington, DC.
  16. Foltz, R.B., Copeland, N.S., Elliot, W.J., 2009. Reopening abandoned forest roads in northern Idaho, USA: quantification of runoff, sediment concentration, infiltration, and interrill erosion parameters. Journal of Environmental Management, 90, 2542–2550.10.1016/j.jenvman.2009.01.01419264387
  17. Fox, D., Bryan, R., Price, A., 1997. The influence of slope angle on final infiltration rate for interrill conditions. Geoderma, 80, 1–2, 181–194.10.1016/S0016-7061(97)00075-X
  18. Gilley, J.E., Woolhiser, D.A., McWhorter, D.B., 1985. Interrill soil erosion – Part I: Development of model equations. Trans. ASAE, 28, 147–153, 159.10.13031/2013.32218
  19. Guo, T.L., Wang, Q.J., Li, D.Q., Zhuang, J., Wu, L.S., 2013. Flow hydraulic characteristic effect on sediment and solute transport on slope erosion. Catena, 107, 145–153.10.1016/j.catena.2013.03.001
  20. Govers, G., 1992. Evaluation of Transporting Capacity Formulae for Overland Flow. University College London Press, London, pp. 243–273.
  21. Gomez, J.A., Nearing, M.A., 2005. Runoff and sediment losses from rough and smooth soil surfaces in a laboratory experiment. Catena, 59, 3, 253–266.10.1016/j.catena.2004.09.008
  22. Hairsine, P.B., Rose, C.W., 1992. Modeling water erosion due to overland flow using physical principles, 1. Sheet flow. Water Resour. Res., 28, 237–243.10.1029/91WR02380
  23. Hairsine, P.B., Moran, C.J., Rose, C.W., 1992. Recent developments regarding the influence of soil surface characteristics on overland flow and erosion. Aust. J. Soil Res., 30, 3, 249–264.10.1071/SR9920249
  24. Huang, C., 1995. Empirical analysis of slope and runoff for sediment delivery from interrill areas. Soil Science Society of America Journal, 59, 4, 982–990.10.2136/sssaj1995.03615995005900040004x
  25. ISSAS, 1978. Analysis of Physical and Chemical Properties of Soil. Shanghai Science Press, Shanghai. (In Chinese.)
  26. Issa, O.M., Le Bissonnais, Y., Planchon, O., Favis-Mortlock, D., Silvera, N., Wainwright, J., 2006. Soil detachment and transport on field-and laboratory-scale interrill areas: erosion processes and the size-selectivity of eroded sediment. Earth Surf. Process. Landf., 31, 929–939.10.1002/esp.1303
  27. Kemper, W.D., Rosenau, R.C., 1986. Aggregate stability and size distribution. In: Klute, A. (Ed.): Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. 2nd ed. SSSA Book Series No. 5. SSSA and ASA, Madison, WI, pp. 425–442.10.2136/sssabookser5.1.2ed.c17
  28. Kinnell, P.I.A., 1993. Interrill erodibilities based on the rainfall intensity flow discharge erosivity factor. Aust. J. Soil Res., 31, 3, 319–332.10.1071/SR9930319
  29. Kinnell, P.I.A., Cummings, D., 1993. Soil slope gradient interactions in erosion by rainimpacted flow. Trans. ASAE, 36, 381–387.10.13031/2013.28349
  30. Liu, B.Y., Nearing, M.A., Risse, L.M., 1994. Slope gradient effects on soil loss for steep slopes. Trans. ASAE, 37, 6, 1835–1840.10.13031/2013.28273
  31. Long, T.Y., Qiao, D, An, Q., Du, K., 2012. Estimating soil erosion in Three Gorges Reservoir area based on GIS and RUSLE. Journal of Irrigation and Drainage, 31, 2, 33–37. (In Chinese.)
  32. Meyer, L.D., Wischmeier, W.H., 1969. Mathematical simulation of the process of soil erosion by water. Trans. ASAE, 12, 6, 754–758.10.13031/2013.38945
  33. Meyer, L.D., 1981. How rain intensity affects interrill erosion. Trans. ASAE, 24, 1472–1475.10.13031/2013.34475
  34. Morgan, R.P.C., Quinton, J.N., Smith, R.E., Govers, G., Poesen, J.W.A., Auerswald, K., Chisci, G., Torri, D., Styczen, M.E., 1998. The European Soil Erosion Model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments. Earth Surf. Process. Landf., 23, 6, 527–544.10.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-5
  35. Molina, A., Govers, G., Vanacker, V., Poesen, J., Zeelmaekers, E., Cisneros, F., 2007. Runoff generation in a degraded Andean ecosystem: Interaction of vegetation cover and land use. Catena, 71, 2, 357–370.10.1016/j.catena.2007.04.002
  36. Nash, J., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I – A discussion of principles. J. Hydrol., 10, 3, 282–290.10.1016/0022-1694(70)90255-6
  37. Nearing, M.A., Foster, G.R., Lane, L.J., Finkner, S.C., 1989. A process-based soil erosion model for USDA-Water Erosion Prediction Project technology. Trans. ASAE, 32, 1587–1593.10.13031/2013.31195
  38. Nearing, M.A., Norton, L.D., Bulgakov, D.A., Larionov, G.A., West, L.T., Dontsova, K.M., 1997. Hydraulics and erosion in eroding rills. Water Resour. Res, 33, 865–876.10.1029/97WR00013
  39. Nearing, M.A., Simanton, J.R., Norton, L.D., Bulygin, S.J., Stone, J., 1999. Soil erosion by surface water flow on a stony, semiarid hillslope. Earth Surf. Proc. Landf., 24, 677–686.10.1002/(SICI)1096-9837(199908)24:8<677::AID-ESP981>3.0.CO;2-1
  40. Niu, J., Zhang, P.C., Xing, M.X., 2010. Characteristic of soil and water loss on purple slope farmland and its control in upper reaches of the Yangtze River. Science of Soil and Water Conservation, 6, 013. (In Chinese.)
  41. Peng, W.Y., Zhang, Z.D., Zhang, K.L., 2015. Hydrodynamic characteristics of rill flow on steep slopes. Hydrol. Process., 29, 3677–3686.10.1002/hyp.10461
  42. Qian, F., Cheng, D., Ding, W., Huang, J., Liu, J., 2016. Hydraulic characteristics and sediment generation on slope erosion in the Three Gorges Reservoir area, China. Journal of Hydrology and Hydromechanics, 64, 3, 237–245.10.1515/johh-2016-0029
  43. Römkens, M.J.M., Helming, K., Prasad, S.N., 2002. Soil erosion under different rainfall intensities, surface roughness, and soil water regimes. Catena, 46, 103–123.10.1016/S0341-8162(01)00161-8
  44. Sha, Y.Q., 1965. An Introduction to Sediment Kinematic. China Industry Press, Beijing.
  45. Wang, D.D., Wang, Z.L., Shen, N., Chen, H., 2016. Modeling soil detachment capacity by rill flow using hydraulic parameters. Journal of Hydrology, 535, 473–479.10.1016/j.jhydrol.2016.02.013
  46. Wei, H., Nearing, M.A., Stone, J.J., Guertin, D.P., Spaeth, K.E., Pierson, F.B., Nichols, M.H., Moffet, C.A., 2009. A new splash and sheet erosion equation for rangelands. Soil Sci. Soc. Am. J., 73, 1386–1392.10.2136/sssaj2008.0061
  47. Wu, B., Wang, Z.L., Zhang, Q.W., Shen, N., Liu, J.N., 2017. Modelling sheet erosion on steep slopes in the loess region of China. Journal of Hydrology, 533, 549–558.10.1016/j.jhydrol.2017.07.017
  48. Yan, F.L., Shi, Z.H., Li, Z.X., Cai, C.F., 2008. Estimating interrill soil erosion from aggregate stability of Ultisols in subtropical China. Soil Tillage Research, 100, 34–41.10.1016/j.still.2008.04.006
  49. Zhang, X.C., Nearing, M.A., Miller, W.P., Norton, L.D., West, L.T., 1998. Modeling interrill sediment delivery. Soil Sci. Soc. Am. J., 62, 438–444.10.2136/sssaj1998.03615995006200020021x
  50. Zhang, X.C., Wang, Z.L., 2017. Interrill soil erosion processes on steep slopes. Journal of Hydrology, 548, 652–664.10.1016/j.jhydrol.2017.03.046
DOI: https://doi.org/10.2478/johh-2019-0024 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 51 - 59
Submitted on: Jun 25, 2018
|
Accepted on: Mar 10, 2019
|
Published on: Feb 13, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Qian Feng, Dong Linyao, Liu Jigen, Sun Bei, Liu Honghu, Huang Jiesheng, Li Hao, published by Slovak Academy of Sciences, Institute of Hydrology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.