Have a personal or library account? Click to login
Performance of a shallow-water model for simulating flow over trapezoidal broad-crested weirs Cover

Performance of a shallow-water model for simulating flow over trapezoidal broad-crested weirs

Open Access
|Nov 2019

References

  1. Cantero-Chinchilla, F.N., Castro-Orgaz, O., Schmocker, L., Hager, W.H., Dey, S., 2018. Depth-averaged modelling of granular dike overtopping. Journal of Hydraulic Research, 56, 4, 537–550. DOI: 10.1080/00221686.2017.1399933.10.1080/00221686.2017.1399933
  2. Castro-Orgaz, O., Hager, W.H., 2013. Unsteady Boussinesq-type flow equations for gradually-eroded beds: Application to dike breaches. Journal of Hydraulic Research, 51, 2, 203–208.10.1080/00221686.2012.739579
  3. Darvishi, E., Fenton, J.D., Kouchakzadeh, S., 2017. Boussinesq equations for flows over steep slopes and structures. Journal of Hydraulic Research, 55, 3, 324–337.10.1080/00221686.2016.1246484
  4. Erpicum, S., Dewals, B.J., Archambeau, P., Pirotton, M., 2010. Dam break flow computation based on an efficient flux vector splitting. Journal of Computational and Applied Mathematics, 234, 7, 2143–2151.10.1016/j.cam.2009.08.110
  5. Felder, S., Chanson, H., 2012. Free-Surface Profiles, Velocity and Pressure Distributions on a Broad-Crested Weir: A Physical Study. Journal of Irrigation and Drainage Engineering, 138, 12, 1068–1074.10.1061/(ASCE)IR.1943-4774.0000515
  6. Fritz, H.M., Hager, W., 1998. Hydraulics of embankment weirs. Journal of Hydraulic Engineering, 124, 9, 963–971.10.1061/(ASCE)0733-9429(1998)124:9(963)
  7. Gallegos, H.A., Schubert, J.E., Sanders, B.F., 2009. Two-dimensional, high-resolution modeling of urban dam-break flooding: A case study of Baldwin Hills, California. Advances in Water Resources, 32, 8, 1323–1335.10.1016/j.advwatres.2009.05.008
  8. Goodarzi, E., Farhoudi, J., Shokri, N., 2012. Flow characteristics of rectangular broad-crested weirs with sloped upstream face. J. Hydrol. Hydromech., 60, 2, 87–100.10.2478/v10098-012-0008-1
  9. Gualtieri, P., De Felice, S., Pasquino, V., Doria, G.P., 2018. Use of conventional flow resistance equations and a model for the Nikuradse equivalent-sand-grain roughness in vegetated flows at high submergence. J. Hydrol. Hydromech., 66, 1, 107–120.10.1515/johh-2017-0028
  10. Haddadi, H., Rahimpour, M., 2012. A discharge coefficient for a trapezoidal broad-crested side weir in subcritical flow. Flow Measurement and Instrumentation, 26, 63–67.10.1016/j.flowmeasinst.2012.04.002
  11. Hager, W.H., Schwalt M., 1994. Broad-crested weir. J. Irrigation and Drainage, 120, 1, 13–26.10.1061/(ASCE)0733-9437(1994)120:1(13)
  12. Hargreaves, D.M., Morvan, H.P., Wright, N.G., 2007. Validation of the volume of fluid method for free surface calculation: The broad-crested weir. Engineering Applications of Computational Fluid Mechanics, 1, 2, 136–146.10.1080/19942060.2007.11015188
  13. Haun, S., Olsen, N.R.B., Feurich, R., 2011. Numerical modeling of flow over trapezoidal broad-crested weir. Engineering Applications of Computational Fluid Mechanics, 5, 3, 397–405.10.1080/19942060.2011.11015381
  14. Horritt, M.S., Bates, P.D., 2001. Predicting floodplain inundation: Raster-based modelling versus the finite-element approach. Hydrological Processes, 15, 5, 825–842.10.1002/hyp.188
  15. ISO 4362, 1999. Hydrometric determinations - Flow measurement in open channels using structures - Trapezoidal broad-crested weirs.
  16. Kirkgoz, M.S., Akoz, M.S., Oner, A.A., 2008. Experimental and theoretical analyses of two-dimensional flows upstream of broad-crested weirs. Canadian Journal of Civil Engineering, 35, 9, 975–986.10.1139/L08-036
  17. Madadi, M.R., Dalir, A.H., Farsadizadeh, D., 2013. Control of undular weir flow by changing of weir geometry. Flow Measurement and Instrumentation, 34, 160–167.10.1016/j.flowmeasinst.2013.09.003
  18. Madadi, M.R., Hosseinzadeh D.A., Farsadizadeh, D., 2014. Investigation of flow characteristics above trapezoidal broad-crested weirs. Flow Measurement and Instrumentation, 38, 139–148.10.1016/j.flowmeasinst.2014.05.014
  19. Major, J., 2013. Influence of upstream face inclination of broad-crested weir on discharge coefficient. BSc diploma thesis, Brno University of Technology, Faculty of Civil Engineering, 58 p.
  20. Pařílková, J., Říha, J., Zachoval, Z., 2012. The influence of roughness on the discharge coefficient of a broad-crested weir. J. Hydrol. Hydromech., 60, 2, 101–114.10.2478/v10098-012-0009-0
  21. Sargison, J.E., Percy, A., 2009. Hydraulics of broad-crested weirs with varying side slopes. Journal of Irrigation and Drainage Engineering, 135, 1, 115–118.10.1061/(ASCE)0733-9437(2009)135:1(115)
  22. Sarker, M.A., Rhodes, D.G., 2004. Calculation of free-surface profile over a rectangular broad-crested weir. Flow Measurement and Instrumentation, 15, 215–219.10.1016/j.flowmeasinst.2004.02.003
  23. Stilmant, F., Pirotton, M., Archambeau, P., Erpicum, S., Dewals, B., 2018. Hydraulic determination of dam releases to generate warning waves in a mountain stream: Performance of an analytical kinematic wave model. Journal of Hydraulic Engineering, 144, 3, 05017006.10.1061/(ASCE)HY.1943-7900.0001425
  24. Tokyay, N.D., Altan-Sakarya, A.B., 2011. Local energy losses at positive and negative steps in subcritical open channel flows. Water SA, 37, 2, 237–244.10.4314/wsa.v37i2.65870
  25. Velísková, Y., Chára, Z., Schügerl, R., Dulovičová, R., 2018. Velocity profile deformation by flooded obstacle in free surface flow. J. Hydrol. Hydromech., 66, 4, 448–456.10.2478/johh-2018-0028
  26. Xu, T., Jin, Y., 2017. Numerical study of the flow over broad-crested weirs by a mesh-free method. Journal of Irrigation and Drainage Engineering, 143, 9, 04017034.10.1061/(ASCE)IR.1943-4774.0001211
  27. Zerihun, Y.T., Fenton, J.D., 2007. A Boussinesq-type model for flow over trapezoidal profile weirs. Journal of Hydraulic Research, 45, 40, 519–528.10.1080/00221686.2007.9521787
DOI: https://doi.org/10.2478/johh-2019-0014 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 322 - 328
Submitted on: Jan 8, 2019
|
Accepted on: Mar 19, 2019
|
Published on: Nov 15, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Jaromír Říha, David Duchan, Zbyněk Zachoval, Sébastien Erpicum, Pierre Archambeau, Michel Pirotton, Benjamin Dewals, published by Slovak Academy of Sciences, Institute of Hydrology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.