Have a personal or library account? Click to login
Assessing methods for the estimation of response times of stream discharge: the role of rainfall duration Cover

Assessing methods for the estimation of response times of stream discharge: the role of rainfall duration

Open Access
|Mar 2019

References

  1. ADOT (Arizona Department of Transportation), 1993. Highway Drainage Design Manual Hydrology. Phoenix, USA, 336 p.
  2. Amigo, J., Ramírez, C., 1998. A bioclimatic classification of Chile: woodland communities in the temperate zone. Plant Ecol., 136, 1, 9–26.10.1023/A:1009714201917
  3. Argente-Sanz, J.C., 2014. Estudio del comportamiento hídrico de una cuenca hidrológica en Angola. Trabajo Fin de Grado Ingeniería en Geomática y Topografía. Escuela Técnica Superior de Ingeniería Geodésica, Cartográfica y Topográfica, Universidad Politécnica de Valencia, Valencia, España, 61 p.
  4. Bentancor, L., Silveira, L., García-Petillo, M., 2014. Incidencia de la intensidad de lluvia en el tiempo de concentración de microcuencas del Uruguay. Agrociencia-Uruguay, 18, 2, 106–116.10.31285/AGRO.18.471
  5. Bransby-Williams, G., 1922. Flood discharge and the dimensions of spillways in India. The Engineer (London), 121, 321–322.
  6. CDH (California Division of Highways), 1960. California culvert practice: reprint of a series of technical abstracts from California highways and public works. 2nd printing. State of California, Department of Public Works, Division of Highways, Sacramento, USA, 119 p.
  7. Chow, V.T., 1959. Open-Channel Hydraulics. McGraw Hill, New York, USA, 680 p.
  8. Chow, V.T., Maidment, V.R., Mays, L.W., 1988. Applied Hydrology. McGraw-Hill, New York, USA, 572 p.
  9. CIREN (Centro de Información de Recursos Naturales), 2001. Estudio Agrológico X Región. Tomo I. CIREN, Santiago, Chile, 480 p.
  10. CIREN (Centro de Información de Recursos Naturales), 2003. Descripciones de Suelos, Materiales y Símbolos. Estudio Agrológico X Región, Publicación 123. CIREN, Santiago, Chile.
  11. Cuevas, J.G., Arumí, J.L., Zúñiga-Feest, A., Little, C., 2018. An unusual kind of diurnal streamflow variation. J. Hydrol. Hydromech., 66, 1, 32–42.10.1515/johh-2017-0041
  12. de Almeida, I.K., Almeida, A.K, Ayach-Anache, J.A., Steffen, J.L., Alves-Sobrinho, T., 2014. Estimation on time of concentration of overland flow in watersheds: a review. Geociências, 33, 4, 661–671.
  13. de Almeida, I.K., Almeida, A.K., Garcia-Gabas, S., Alves-Sobrinho, T., 2017. Performance of methods for estimating the time of concentration in a watershed of a tropical region. Hydrolog. Sci. J., 62, 14, 2406–2414. DOI: 10.1080/02626667.2017.1384549.10.1080/02626667.2017.1384549
  14. DGA (Dirección General de Aguas), 1995. Manual de Cálculo de Crecidas y Caudales Mínimos en Cuencas sin Información Fluviométrica. Dirección General de Aguas, Ministerio de Obras Públicas, Santiago, Chile, 88 p. Available at: http://documentos.dga.cl/FLU398.pdf [Accessed 04 Nov. 2017].
  15. Dörner, J., Dec, D., Zúñiga, F., Horn, R., López, I., Leiva, C., Cuevas, J., 2013. Soil changes in the physical quality of an andosol under different management intensities in Southern Chile. In: Krümmelbein, J., Horn, R., Pagliai, M. (Eds.): Soil Degradation. Adv. Geoecol., 42, 262–281.
  16. Dörner, J., Huertas, J., Cuevas, J.G., Leiva, C., Paulino, L., Arumí, J.L., 2015. Water content dynamics in a volcanic ash soil slope in southern Chile. J. Plant Nutr. Soil Sci., 178, 4, 693–702.10.1002/jpln.201500112
  17. Edwards, R.T., 1998. The hyporheic zone. In: Naiman, R.J., Bilby, R.E. (Eds.): River Ecology and Management, Lessons from the Pacific Coastal Ecoregion. Springer, New York, USA, Chapter 16, pp. 399–429.
  18. Folmar, N.D., Miller, A.C., 2008. Development of an empirical lag time equation. J. Irrig. Drain. E. ASCE, 134, 4, 501–506.10.1061/(ASCE)0733-9437(2008)134:4(501)
  19. Giandotti, M., 1940. Previsione empirica delle piene in base alle precipitazioni meteoriche, alle caratteristiche fisiche e morfologiche dei bacini; Applicazione del metodo ad alcuni bacini dell’Appennino Ligure. Memorie e Studi Idrografici, 10, 5–13. Available at: http://hydrologie.org/redbooks/a025/Potam_Q2_R1 [Accessed 04 Nov. 2017].
  20. Granato, G.E., 2012. Estimating Basin Lagtime and Hydrograph-Timing Indexes Used to Characterize Stormflows for Runoff-Quality Analysis. Scientific Investigations Report 2012–5110. U.S. Department of the Interior, U.S. Geological Survey, Reston, Virginia, USA, 58 p. Available at: https://pubs.usgs.gov/sir/2012/5110/pdf/sir2012-5110_text.pdf [Accessed 04 Nov. 2017].
  21. Gumbel, E.J., 1960. Multivariate extremal distributions. Bull. Inst. Internat. de Statistique 37, 471–475.
  22. Izzard, C.F., 1946. Hydraulics of runoff from developed surfaces. In: Proc. 26th Annual Meeting of the Highway Research Board. Highway Research Board, Washington, USA, pp. 129–146.
  23. Kerby, W.S., 1959. Time of concentration for overland flow. J. Civil Eng., ASCE, 26, 3, 60–68.
  24. Kirpich, Z.P., 1940. Time of concentration of small agricultural watersheds. Civil Eng., 10, 6, 362–368.
  25. Mata-Lima, H., Vargas, H., Carvalho, J., Gonçalves, M., Caetano, H., Marques, A., Raminhos, C., 2007. Comportamento hidrológico de bacias hidrográficas: integração de métodos e aplicação a um estudo de caso. Rem-Rev. Esc. Minas, 60, 3, 525–536.10.1590/S0370-44672007000300014
  26. McCuen, R.H., 2009. Uncertainty analyses of watershed time parameters. J. Hydrol. Eng., 14, 5, 490–498. DOI: 10.1061/(ASCE)HE.1943-5584.0000011#sthash.qleAhfH8.dpuf10.1061/(ASCE)HE.1943-5584.0000011#sthash.qleAhfH8.dpuf
  27. McCuen, R.H., Spiess, J.M., 1995. Assessment of kinematic wave time of concentration. J. Hydraul. Eng. ASCE, 121, 3, 256–266.10.1061/(ASCE)0733-9429(1995)121:3(256)
  28. McCuen, R.H., Wong, S.L., Rawls, W.J., 1984. Estimating urban time of concentration. J. Hydraul. Eng., 110, 7, 887–904.10.1061/(ASCE)0733-9429(1984)110:7(887)
  29. Morgali, J.R., Linsley, R.K., 1965. Computer analysis of overland flow. J. Hydraul. Div., 95, 81–100.10.1061/JYCEAJ.0001269
  30. NRCS (Natural Resource Conservation Service), 1986. Urban Hydrology for Small Watersheds. Technical Release 55. U.S. Department of Agriculture, Washington, DC, USA, 164 p. Available at: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1044171.pdf [Accessed 04 Nov. 2017].
  31. Papadakis, C., Kazan, N., 1986. Time of Concentration in Small Rural Watersheds. Technical report 101/08/86/CEE. College of Engineering, University of Cincinnati, Cincinnati, USA, 18 p.
  32. Pasini, F., 1914. Relazione sul progettodella bonifica renana, Bologna, Italy.
  33. Sharifi, S., Hosseini, S.M., 2011. Methodology for identifying the best equations for estimating the time of concentration of watersheds in a particular region. J. Irrig. Drain. E. ASCE, 137, 11, 712–719.10.1061/(ASCE)IR.1943-4774.0000373
  34. Sheridan, J.M., 1994. Hydrograph time parameters for flatland watersheds. Trans. of Am. Soc. Agr. Eng., 37, 1, 103–113.10.13031/2013.28059
  35. Simas, M., 1996. Lag Time Characteristics in Small Watersheds in The United States. A dissertation submitted to School of Renewable Natural Resources, University of Arizona, Tucson, USA, 174 p.
  36. Singh, N., Singh, K.K., 2017. Geomorphological analysis and prioritization of sub-watersheds using Snyder’s synthetic unit hydrograph method. Appl. Water Sci., 7, 1, 275–283. https://doi.org/10.1007/s13201-014-0243-110.1007/s13201-014-0243-1
  37. Soil Survey Staff, 1999. Soil taxonomy: A Basic System of Soil Classification For Making and Interpreting Soil Surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436, Washington, DC, USA, 886 p.
  38. Sokal, R.R., Rohlf, F.J., 1995. Biometry: The Principles and Practice of Statistics in Biological Research. Third edition. W. H. Freeman and Company, New York, USA, 885 p.
  39. Témez, J.R., 1978. Cálculo hidrometeorológico de caudales máximos en pequeñas cuencas naturales. Ministerio de Obras Públicas y Urbanismo (MOPU), Dirección General de Carreteras, Madrid, España, 96 p.
  40. Tucci, C., 2000. Hidrología, Ciência e aplicaçao. Coleção ABRH de Recursos Hídricos 4). Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 944 p.
  41. USDA-NRCS (United States Department of Agriculture-Natural Resources Conservation Service), 2010. Chapter 15: Time of Concentration. In: USDA- NRCS (Ed.): National Engineering Handbook, Part 630 Hydrology. Washington, DC, pp. 15i–15B-3.
  42. Vélez, J.J., Botero, A., 2011. Estimation of the time of concentration and the lag time at San Luis Creek basin, Manizales. Dyna, 78, 165, 58–71. (In Spanish.)
  43. Wondzell, S.M., Gooseff, M.N., McGlynn, B.L., 2007. Flow velocity and the hydrologic behavior of streams during baseflow. Geophys. Res. Lett., 34, L24404. DOI: 10.1029/2007gl031256.10.1029/2007GL031256
  44. WRB, 2006. World Reference Base for Soil Resources. A Framework for International Classification, Correlation and Communication. 2nd Edition. FAO, World Soil Resources Reports, 103, Rome, Italy, 142 p.
DOI: https://doi.org/10.2478/johh-2018-0043 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 143 - 153
Submitted on: Nov 15, 2017
|
Accepted on: May 23, 2018
|
Published on: Mar 28, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Jaime G. Cuevas, José L. Arumí, José Dörner, published by Slovak Academy of Sciences, Institute of Hydrology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.