Have a personal or library account? Click to login
Modis Snowline Elevation Changes During Snowmelt Runoff Events in Europe Cover

References

  1. Blöschl, G., Hall, J., Parajka, J., Perdigão, R.A.P., Merz, B., Arheimer, B., Aronica, G.T., Bilibashi, A., Bonacci, O., Borga, M., Čanjevac, I., Castellarin, A., Chirico, G.B., Claps, P., Fiala, K., Frolova, N., Gorbachova, L., Gül, A., Hannaford, J., Harrigan, S., Kireeva, M., Kiss, A., Kjeldsen, T.R., Kohnová, S., Koskela, J.J., Ledvinka, O., Macdonald, N., Mavrova-Guirguinova, M., Mediero, L., Merz, R., Molnar, P., Montanari, A., Murphy, C., Osuch, M., Ovcharuk, V., Radevski, I., Rogger, M., Salinas, J.L., Sauquet, E., Šraj, M., Szolgay, J., Viglione, A., Volpi, E., Wilson, D., Zaimi, K., Živković, N., 2017. Changing climate shifts timing of European floods. Science, 357, 6351, 588-590. DOI: 10.1126/science.aan2506.10.1126/.aan2506
  2. Ceola, S., Arheimer, B., Baratti, E., Blöschl, G., Capell, R., Castellarin, A., Freer, J., Han, D., Hrachowitz, M., Hundecha, Y., Hutton, C., Lindström, G., Montanari, A., Nijzink, R., Parajka, J., Toth, E., Viglione, A., Wagener, T., 2015. Virtual laboratories: new opportunities for collaborative water science. Hydrol. Earth Syst. Sci., 19, 2101-2117. DOI: 10.5194/hess-19-2101-2015.10.5194/hess-19-2101-2015
  3. Chapman, T., 1999. A comparison of algorithms for stream flow recession and baseflow separation. Hydrological Processes, 13, 5, 701-714.10.1002/(SICI)1099-1085(19990415)13:5<;701::AID-HYP774>3.0.CO;2-2
  4. Clow, D.W., 2010. Changes in the timing of snowmelt and streamflow in Colorado: A response to recent warming. Journal of Climate, 23, 2293-2306. https://doi.org/10.1175/2009JCLI2951.1.10.1175/2009JCLI2951.1
  5. Collins, D.N., 1998. Rainfall-induced high-magnitude runoff events in highly-glacierized Alpine basins. In: Proceedings of the HeadWater'98 Conference on Hydrology, Water Resources and Ecology in Headwaters (Meran/Merano, Italy, April 1998). IAHS Publ. no. 248, pp. 69-78.
  6. Déry, S.J., Salomonson, V.V., Stieglitz, M., Hall, D.K., Appel, I., 2005. An approach to using snow areal depletion curves inferred from MODIS and its application to land surface modelling in Alaska. Hydrological Processes, 19, 2755-2774. DOI: 10.1002/hyp.5784.10.1002/hyp.5784
  7. Dietz, A.J., Wohner, Ch., Kuenzer, C., 2012. European snow cover characteristics between 2000 and 2011 derived from improved MODIS daily snow cover products. Remote Sensing, 4, 8, 2432-2454. DOI: 10.3390/rs4082432.10.3390/rs4082432
  8. Gascoin, S., Hagolle, O., Huc, M., Jarlan, L., Dejoux, J.-F., Szczypta, C., Marti, R., Sánchez, R., 2015. A snow cover climatology for the Pyrenees from MODIS snow products.10.5194/hessd-11-12531-2014
  9. Hydrol. Earth Syst. Sci., 19, 2337-2351. Hall, D.K., Riggs, G.A., 2016. MODIS/Terra Snow Cover Daily L3 Global 500m Grid, Version 6. [Indicate subset used]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. DOI: http://dx.doi.org/10.5067/MODIS/MOD10A1.006. [Date Accessed].10.5067/MODIS/MOD10A1.006.[Date]
  10. Krajčí, P., Holko, L., Perdigão, R.A.P., Parajka, J., 2014. Estimation of regional snowline elevation (RSLE) from MODIS images for seasonally snow covered mountain basins. Journal of Hydrology, 519, 1769-1778.10.1016/j.jhydrol.2014.08.064
  11. Li, B., Zhu, A.-X., Zhou, C., Zhang, Y., Pei, T., Qin, C., 2008. Automatic mapping of snow cover depletion curves using optical remote sensing data under conditions of frequent cloud cover and temporary snow. Hydrol. Process., 22, 2930-2942. DOI: 10.1002/hyp.6891.10.1002/hyp.6891
  12. Mangini, W., Viglione, A., Hall, J., Hundecha, Y., Ceola, S., Montanari, A., Rogger, M., Salinas, J.L., Borzì, I., Parajka, J., 2018. Detection of trends in magnitude and frequency of flood peaks across Europe, Hydrological Science Journal, https://doi.org/10.1080/02626667.2018.1444766. (In press).10.1080/02626667.2018.1444766.()
  13. Merz, R., Blöschl, G., 2003. A process typology of regional floods. Water Resources Research, 39, 12, 39, 1340. DOI: 10.1029/2002WR001952, 12.10.1029/2002WR00195212
  14. Mioduszewski, J.R., Rennermalm, A.K., Robinson, D.A., Mote, T.L., 2014. Attribution of snowmelt onset in Northern Canada.10.1002/2013JD021024
  15. J. Geophys. Res. Atmos., 119, 9638-9653. DOI: 10.1002/ 2013JD021024. Parajka, J., 2017. Catalogue of identified flood peaks from GRDC dataset (FLOOD TYPE experiment). DOI: 10.5281/zenodo.581436.10.1002/2013JD021024.Parajka,J.,2017.peaksfromGRDCdataset().DOI:10.5281/zenodo.581436
  16. Parajka, J., Blöschl, G., 2006. Validation of MODIS snow cover images over Austria. Hydrology and Earth System Sciences, 10, 679-689.10.5194/hess-10-679-2006
  17. Parajka, J., Blöschl, G., 2012. MODIS-based snow cover products, validation, and hydrologic applications. In: Chang, N.B., Hong, Y. (Eds.): Multiscale Hydrologic Remote Sensing: Perspectives and Applications. CRC Press, Taylor & Francis Group, Boca Raton, Florida, USA, pp. 185-212.10.1201/b11279-9
  18. Parajka, J., Holko, L., Kostka, Z., Blöschl, G., 2012. MODIS snow cover mapping accuracy in a small mountain catchment - comparison between open and forest sites. Hydrology and Earth System Sciences, 16, 2365-2377.10.5194/hess-16-2365-2012
  19. Paudel, K.P., Andersen, P., 2011. Monitoring snow cover variability in an agropastoral area in the Trans Himalayan region of Nepal using MODIS data with improved cloud removal methodology. Remote Sens. Environ., 115, 5, 1234-1246.10.1016/j.rse.2011.01.006
  20. Riboust, P., Thirel, G., Le Moine, N., Ribstein, P., 2019. Revisiting a simple degree-day model for integrating satellite data: implementation of SWE-SCA hystereses. Journal of Hydrology and Hydromechanics, 67, 70-81.10.2478/johh-2018-0004
  21. Thomas, B.F., Vogel, R.M., Kroll, C.N., Famiglietti, J.S., 2013. Estimation of the base flow recession constant under human interference. Water Resources Research, 49, 7366-7379. DOI: 10.1002/wrcr.20532.10.1002/wrcr.20532
  22. Vogel, R.M., Kroll, C.N., 1996. Estimation of baseflow recession constants. Water Resources Management, 10, 303-320.10.1007/BF00508898
  23. Wang, X., Xie, H., Liang, T., Huang, X., 2009. Comparison and validation of MODIS standard and new combination of Terra and Aqua snow cover products in northern Xinjiang, China. Hydrol. Process., 23, 3, 419-429.10.1002/hyp.7151
  24. Wang, W., Huang, X., Deng, J., Xie, H., Liang, T., 2015. Spatio-temporal change of snow cover and its response to climate over the Tibetan plateau based on an improved daily cloud-free snow cover product. Remote Sens., 7, 1, 169-194.10.3390/rs70100169
  25. Xinghua, L, Wenxuan, F., Huanfeng, S., Chunlin, H., Liangpei, Z., 2017. Monitoring snow cover variability (2000-2014) in the Hengduan Mountains based on cloud-removed MODIS products with an adaptive spatio-temporal weighted method. Journal of Hydrology, 551, 314-327.10.1016/j.jhydrol.2017.05.049
DOI: https://doi.org/10.2478/johh-2018-0011 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 101 - 109
Submitted on: Sep 28, 2017
Accepted on: Feb 19, 2018
Published on: Nov 7, 2018
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Juraj Parajka, Nejc Bezak, John Burkhart, Bjarki Hauksson, Ladislav Holko, Yeshewa Hundecha, Michal Jenicek, Pavel Krajčí, Walter Mangini, Peter Molnar, Philippe Riboust, Jonathan Rizzi, Aynur Sensoy, Guillaume Thirel, Alberto Viglione, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.