Have a personal or library account? Click to login
Initial water repellency affected organic matter depletion rates of manure amended soils in Sri Lanka Cover

Initial water repellency affected organic matter depletion rates of manure amended soils in Sri Lanka

Open Access
|Nov 2014

References

  1. Almendros, G., Guadalix, M.E., González-Vila, F.J., Martin, F., 1998. Distribution of structural units in humic substances as revealed by multi-step selective degradation and 13C-NMR of successive residues. Soil Biol. Biochem., 30, 755-765.10.1016/S0038-0717(97)00175-2
  2. Augris, N., Balesdent, J., Mariotti, A., Derenne, S., Largeau, C., 1998. Structure and origin of insoluble and non-hydrolizable, aliphatic organic matter in a forest soil. Organic Geochemistry, 28, 119-124.10.1016/S0146-6380(97)00094-6
  3. Bauters, T.W.J., DiCarlo, D.A., Steenhuis, T.S., Parlange, J.-Y., 1998. Preferential flow in water-repellent sands. Soil Sci. Soc. Am. J., 62, 1185-1190.10.2136/sssaj1998.03615995006200050005x
  4. Cox, P.M., Betts, R.A., Jones, C.D., Spall, S.A., Totterdell, I.J., 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187.10.1038/35041539
  5. Cregger, M.A., Sanders, N.J., Dunn, R.R., Classen, A.T., 2014. Microbial communities respond to experimental warming, but site matters. PeerJ 2:e358, doi.org/10.7717/peerj.35810.7717/peerj.358
  6. Davidson, E.A., Janssens, I.A., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165-173. 10.1038/nature04514
  7. de Jonge, L.W., Jacobsen, O.H., Moldrup, P., 1999. Soil water repellency: effects of water content, temperature, and particle size. Soil Sci. Soc. Am. J., 63, 437-442.10.2136/sssaj1999.03615995006300030003x
  8. DeBano, L.F., 2000. Water repellency in soils: a historical overview. J. Hydrol., 231-232, 4-32.10.1016/S0022-1694(00)00180-3
  9. Derjaguin, B., Churaev, N., 1986. Properties of water layers adjacent to interfaces. In: Croxton, C.A. (Ed.): Fluid Interfacial Phenomena. Wiley, New York, pp. 663-738.
  10. Doerr, S.H., Shakesby, R.A., Walsh, R.P.D., 2000. Soil water repellency: its causes, characteristics and hydrogeomorphological significance. Earth-Sci. Rev., 51, 33-65.10.1016/S0012-8252(00)00011-8
  11. Doerr, S.H., Shakesby, R.A., Dekker, L.W., Ritsema, C.J., 2006. Occurrence, prediction and hydrological effects of water repellency amongst major soil and land-use types in a humid temperate climate. Eur. J. Soil Sci., 57, 741-754.10.1111/j.1365-2389.2006.00818.x
  12. Goebel, M-O, Woche, S.K., Bachmann, J., Lamparter, A., Fischer, W.R., 2007. Significance of wettability-induced changes in microscopical water distribution for soil organic matter decomposition. Soil Sci. Soc. Am. J., 71, 1593-1599.10.2136/sssaj2006.0192
  13. Goebel, M.-O., Woche, S.K., Bachmann, J., 2009. Do soil aggregates really protect encapsulated organic matter against microbial decomposition? Biologia, 64, 443-448.10.2478/s11756-009-0065-z
  14. Goebel, M.-O., Bachmann, J., Reichstein, M., Janssens, I.A., Guggenberger, G., 2011. Soil water repellency and its implications for organic matter decomposition - is there a link to extreme climatic events? Glob. Change Biol., 17, 2640-2656.10.1111/j.1365-2486.2011.02414.x
  15. González-Pérez, J.A., González-Vila, F.J., Polvillo, O., Almendros, G., Knicker, H., Salas, F., Costa, J.C., 2002. Wildfire and black carbon in Andalusian Mediterranean forest. In: Viegas, D.X. (Ed.): Forest Fire Research and Wildland Fire Safety. Millpress, Rotterdam, The Netherlands, pp. 1-7.
  16. Hartz, T.K., Mitchell, J.P., Giannini, C., 2000. Nitrogen and carbon mineralization dynamics of manures and composts. HortScience, 35, 209-212.10.21273/HORTSCI.35.2.209
  17. Janzen, H.H., Kucey, R.M.N., 1988. C, N and S mineralization of crop residue as influenced by crop species and nutrient regime. Plant and Soil, 100, 35-41.10.1007/BF02371192
  18. Jaramillo, D.F., Dekker, L.W., Ritsema, C.J., Hendrickx, J.M.H., 2000. Occurrence of soil water repellency in arid and humid climates. J. Hydrol., 231, 105-111.10.1016/S0022-1694(00)00187-6
  19. Jones, C., McConnell, C., Coleman, K., Cox, P., Falloon, P., Jenkinson, D., Powlson, D., 2005. Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil. Global Change Biology, 11, 54-166.10.1111/j.1365-2486.2004.00885.x
  20. Kaboneka, S., Sabbe, W.E., Mauromoustakos, A., 1997. Carbon decomposition kinetics and nitrogen mineralization from corn, soybean, and wheat residues. Communications in Soil Sci. Plant Anal., 28, 1359-1373.10.1080/00103629709369880
  21. Karhu, K., Fritze, H., Tuomi, M., Vanhala, P., Spetz, P., Kitunen, V., Liski, J., 2010. Temperature sensitivity of organic matter decomposition in two boreal forest soil profiles. Soil Biol. Biochem., 42, 72-82.10.1016/j.soilbio.2009.10.002
  22. King, P.M., 1981. Comparison of methods for measuring severity of water repellence of sandy soils and assessment of some factors that affect its measurement. Aust. J. Soil Res., 19, 275-285.10.1071/SR9810275
  23. Kobayashi, M., Shimizu, T., 2007. Soil water repellency in a Japanese cypress plantation restricts increases in soil water storage during rainfall events. Hydrol. Processes, 21, 2356-2364.10.1002/hyp.6754
  24. Lal, R., Follett, F., Stewart, B.A., Kimble, J.M., 2007. Soil carbon sequestration to mitigate climate change and advance food security. Soil Science, 172, 943-956.10.1097/ss.0b013e31815cc498
  25. Leelamanie, D.A.L., Karube, J., 2007. Effects of organic compounds, water content, and clay on water repellency of a model sandy soil. Soil Sci. Plant Nutr., 53, 711-719.10.1111/j.1747-0765.2007.00199.x
  26. Leelamanie, D.A.L., Karube, J., 2014a. Water stable aggregates of Japanese Andisol as affected by hydrophobicity and drying temperature. J. Hydrol. Hydromech., 62, 2, 97-100.10.2478/johh-2014-0019
  27. Leelamanie, D.A.L., Karube, J., 2014b. Surface hydrophobicity of Japanese Andisol and its behavior upon exposure to heat.Soil Sci. Soc. Am. J., 78, 3, 761-766.10.2136/sssaj2013.11.0483n
  28. Leelamanie, D.A.L., Karube, J., Samarawickrama, U.I., 2013. Stability analysis of aggregates in relation to the hydrophobicity of organic manure for Sri Lankan Red Yellow Podzolic soils. Soil Sci. Plant Nutr., 59, 5, 683-691.10.1080/00380768.2013.826568
  29. Lichner, L., Hallett, P.D., Feeney, D.S., Dugova, O., Sir, M., Tesar, M., 2007. Field measurement of soil water repellency and its impact on water flow under different vegetation. Biologia, 62, 537-541.10.2478/s11756-007-0106-4
  30. Lichner, L., Holko, L., Zhukova, N., Schacht, K., Rajkai, K., Fodor, N., Sandor, R., 2012. Plants and biological soil crust influence the hydrophysical parameters and water flow in an aeolian sandy soil. J. Hydrol. Hydromech., 60, 4, 309-318.10.2478/v10098-012-0027-y
  31. Lichner, L., Hallett, P.D., Drongová, Z., Czachor, H., Kovacik, L., Mataix-Solera, J., Homolák, M., 2013. Algae influence the hydrophysical parameters of a sandy soil. Catena, 108, 58-68.10.1016/j.catena.2012.02.016
  32. Marschner, B, Kalbitz, K., 2003. Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma, 113, 211-235.10.1016/S0016-7061(02)00362-2
  33. Mary, B., Fresneau, C., Morel, J.L., Mariotti, A., 1993. C and N cycling during decomposition of root mucilage, roots and glucose in soil. Soil Biol. Biochem., 25, 1005-1014.10.1016/0038-0717(93)90147-4
  34. National Atlas of Sri Lanka, 2007. National Atlas of Sri Lanka, 2nd ed., Survey Departmentof Sri Lanka, Colombo, Sri Lanka.
  35. Nelson, D.V., Sommers, L.E., 1996. Total carbon, organic carbon, and organic matter. In: Sparks, D.L. (Ed.): Methods of Soil Analysis. Part 3: Chemical Methods. Soil Science Society of America, Madison, WI, pp. 539-579.10.2134/agronmonogr9.2.2ed.c29
  36. Recous, S., Robin, D., Darwis, D., Mary, B., 1995. Soil inorganic N availability: effect on maize residue decomposition. Soil Biol. Biochem., 27, 1529-1538.10.1016/0038-0717(95)00096-W
  37. Savage, S.M., Heaton, C., Osborn, J., Letey, J., 1972.
  38. Substances contributing to fire-induced water repellency in soils. Soil Sci. Soc. Am. Proc., 36, 674-678.10.2136/sssaj1972.03615995003600040047x
  39. Spaccini, R., Piccolo, A., Haberhauer, G., Gerzabek, M.H., 2000. Transformation of organic matter from maize residues into labile and humic fractions of three European soils as revealed by 13C distribution and CPMAS-NMR spectra. Eur. J. Soil Sci., 51, 583-594.10.1046/j.1365-2389.2000.00341.x
  40. Spacini, R., Piccolo, A., Conte, P., Haberhauer, G., Gerzabek, M.H., 2002. Increased soil organic carbon sequestration though hydrophobic protection by humic substances. Soil Biol. Biochem., 34, 1839-1851.10.1016/S0038-0717(02)00197-9
  41. Thuriès, L., Pansu, M., Feller, C., Herrmann, P., Rémy, J.-C., 2001. Kinetics of added organic matter decomposition in a Mediterranean sandy soil. Soil Biol. Biochem., 33, 997-1010.10.1016/S0038-0717(01)00003-7
  42. Wallis, M.G., Horne, D.J., 1992. Soil water repellency. Advances in Soil Science, 20, 91-146.10.1007/978-1-4612-2930-8_2
  43. Whitford, W.G., 1996. The importance of the biodiversity of soil biota in arid ecosystems. Biodiversity & Conservation, 5, 185-195. 10.1007/BF00055829
DOI: https://doi.org/10.2478/johh-2014-0040 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 309 - 315
Submitted on: May 30, 2014
Accepted on: Sep 5, 2014
Published on: Nov 15, 2014
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 D.A.L. Leelamanie, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.