Have a personal or library account? Click to login
An object-oriented overland flow solver for watershed flood inundation predictions: case study of Ulus basin, Turkey Cover

An object-oriented overland flow solver for watershed flood inundation predictions: case study of Ulus basin, Turkey

By: Burak Turan and  Keh-Han Wang  
Open Access
|Aug 2014

References

  1. Anastasiou, K., Chan, C.T., 1997. Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes. Int. J. Numer. Meth. Fluids, 24, 1225-1245.10.1002/(SICI)1097-0363(19970615)24:11<;1225::AID-FLD540>3.0.CO;2-D
  2. Audusse, E, Bristeau, M.O., 2005. A well-balanced positivity preserving ‘second-order’ scheme for shallow water flows on unstructured meshes. J. Comp. Phys., 206, 1, 311-333.10.1016/j.jcp.2004.12.016
  3. Bellos, C.V., Soulis, J.V., Sakkas, J.G., 1991. Computation of two-dimensional dam break induced flows. Adv. Water Resour., 14, 1, 31-41.10.1016/0309-1708(91)90028-M
  4. Barth, T.J., Jespersen, D.C., 1989. The design and application of upwind schemes on unstructured meshes. The 27th Aerospace Science Meeting, Reno, Nevada, AIAA-89-0366.10.2514/6.1989-366
  5. Bellos, C.V., Soulis, J.V., Sakkas, J.G., 1992. Experimental investigation of two-dimensional dam-break induced flows. J. Hydr. Res., 30, 1, 47-63.10.1080/00221689209498946
  6. Bermudez, A., Vazquez, M.E., 1994. Upwind methods for hyperbolic conservation laws with source terms. Computers and Fluids, 23, 1049-1071.10.1016/0045-7930(94)90004-3
  7. Bradford, S.F., Sanders, B.F., 2002. Finite-volume model for shallow-water flooding of arbitrary topography. J. Hydr. Eng., 128, 3, 289-298.10.1061/(ASCE)0733-9429(2002)128:3(289)
  8. Brufau, P., Vazquez-Cendon, M.E., Garcia-Navarro, P., 2002. A numerical model for the flooding and drying of irregular domains. Int. J. Numer. Meth. Fluids, 39, 247-275.10.1002/fld.285
  9. Brufau, P., Garcia-Navarro, P., Vazquez-Cendon, M.E., 2004. Zero mass error using unsteady wetting-drying conditions in shallow flows over dry irregular topography. Int. J. Numer. Meth. Fluids, 45, 1047-1082.10.1002/fld.729
  10. Cea, L., French, J.R., Vazquez-Cendon, M.E., 2006. Numerical modeling of tidal flows tidal flows in complex estuaries including turbulence: an unstructured finite volume solver and experimental validation. Int. J. Numer. Meth. Fluids, 67, 1909-1932.10.1002/nme.1702
  11. Godunov, S., 1959. A divergence scheme for numerical computation of discontinuous solution of hydrodynamic equations. Math. Sbornik, 43, 271-306.
  12. Hubbard, M.F., Garcia-Navarro, P., 2000. Flux difference splitting and the balancing of source terms and flux gradients. J. Comp. Phys., 165, 89-125.10.1006/jcph.2000.6603
  13. Ivanov, V.Y., Vivoni, E.R., Bras, R.L., Entekhabi, D., 2004. Catchment hydrologic response with a fully distributed triangulated irregular network model. Water Resour. Res., 40, W11102, 1-23.10.1029/2004WR003218
  14. Kettani, E.E.-C.B., Ouazar, D., 1994. Object-oriented finite volume dam-break model. In: Proceedings of Modeling of Flood Propagation over Initially Dry Areas, Milan, Italy, pp. 186-196.
  15. Kim, J., Ivanov, V.Y., Katopodes, N.D., 2013. Modeling erosion and sedimentation coupled with hydrological and overland flow processes at the watershed scale. Water Resour. Res., 49, 5134-5154.10.1002/wrcr.20373
  16. LeVeque, R.J., 2002. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge.10.1017/CBO9780511791253
  17. Mackie, R., 1992. Object-oriented programming of the finite element method. Int. J. Numer. Meth. Fluids, 35, 2, 425-436.10.1002/nme.1620350212
  18. Malan, A.G., Lewis, R.W., 2004. On the development of highperformance C++ object-oriented code with application to an explicit edge-based fluid dynamics scheme. Computers and Fluids, 33, 1291-1304.10.1016/j.compfluid.2003.12.005
  19. Pan, D., Cheng, J.C., 1993. Upwind finite-volume Navier- Stokes computations on unstructured triangular meshes. AIAA J., 31, 9, 1618-1625.10.2514/3.11823
  20. Roe, P.L., 1981. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comp. Phys., 43, 357-372.10.1016/0021-9991(81)90128-5
  21. Rogers, B.D., Borthwick, A.G.L., Taylor, P.H., 2003. Mathematical balancing of flux gradient and source terms prior to use Roe’s approximate Riemann solver. J. Comp. Phys., 192, 422-451.10.1016/j.jcp.2003.07.020
  22. Simpson, B.R., 2003. C++ Classes for 2-D Unstructured Mesh Programming. INRIA Scientific Report, No. 3592, ISSN 0249-6399. ftp://ftp.inria.fr/INRIA/publication/publicpdf/RR/RR-3592.pdf
  23. Usul, N., Turan, B., 2006. Flood Analysis within the Ulus Basin, Turkey, using geographic information systems. Natural Hazards, 39, 2, 213-229.10.1007/s11069-006-0024-8
  24. Valiani, A., Begnudelli, L., 2006. Divergence form for bed slope source term (DFB) in shallow water equations. J. Hydr. Eng., 132, 7, 652-665.10.1061/(ASCE)0733-9429(2006)132:7(652)
  25. Ying, X., Wang, S.S.Y., 2008. Improved implementation of the HLL approximate Riemann solver for one-dimensional open channel flows. J. Hydr. Res., 46, 1, 21-34.10.1080/00221686.2008.9521840
  26. Zhao, D.H., Shen, H.W., Lai, J.S., Tabios, G.Q., 1996. Approximate Riemann solvers in FVM for 2D hydraulic shock wave modeling. J. Hydr. Eng., 122, 12, 692-702.10.1061/(ASCE)0733-9429(1996)122:12(692)
  27. Zoppou, C., Roberts, S., 2003. Explicit schemes for dam-break simulations. J. Hydr. Eng., 129, 1, 11-34.10.1061/(ASCE)0733-9429(2003)129:1(11)
DOI: https://doi.org/10.2478/johh-2014-0029 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 209 - 217
Submitted on: Feb 14, 2014
|
Accepted on: Jun 26, 2014
|
Published on: Aug 15, 2014
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Burak Turan, Keh-Han Wang, published by Slovak Academy of Sciences, Institute of Hydrology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.