Have a personal or library account? Click to login
An automated microinfiltrometer to measure small-scale soil water infiltration properties Cover

An automated microinfiltrometer to measure small-scale soil water infiltration properties

Open Access
|Aug 2014

References

  1. Arriaga, F.J., Kornecki, T.S., Balkcom, K.S., Raper, R.L., 2010. A method for automating data collection from a double-ring infiltrometer under falling head conditions. Soil Use Manage., 26, 61-67.10.1111/j.1475-2743.2009.00249.x
  2. Bachmann, J., Goebel, M.O., Woche, S.K., 2013. Small-scale contact angle mapping on undisturbed soil surfaces. J. Hydrol. Hydromech., 61, 3-8.10.2478/johh-2013-0002
  3. Bowker, M.A., Eldridge, D.J., Val, J., Soliveres, S., 2013. Hydrology in a patterned landscape is co-engineered by soildisturbing animals and biological crusts. Soil Bio. Biochem., 61, 14-22.10.1016/j.soilbio.2013.02.002
  4. Casey, F.X.M., Derby, N.E., 2002. Improved design for an automated tension infiltrometer. Soil Sci. Soc. Am. J., 66, 64-67.10.2136/sssaj2002.6400
  5. Castiglione, P., Shouse, P.J., Mohanty, B., Hudson, D., van Genuchten, M.T., 2005. Improved tension infiltrometer for measuring low fluid flow rates in unsaturated fractured rock. Vadose Zone J., 4, 885-890.10.2136/vzj2004.0135
  6. Doerr, S.H., Ferreira, A.J.D., Walsh, R.P.D., Shakesby, R.A., Leighton-Boyce, G., Coelho, C.O.A., 2003. Soil water repellency as a potential parameter in rainfall-runoff modelling: experimental evidence at point to catchment scales from Portugal. Hydrol. Process., 17, 363-377.10.1002/hyp.1129
  7. Hallett, P., Young, I., 1999. Changes to water repellence of soil aggregates caused by substrate-induced microbial activity. Eur. J. Soil Sci., 50, 35-40.10.1046/j.1365-2389.1999.00214.x
  8. Hallett, P., Gordon, D., Bengough, A., 2003. Plant influence on rhizosphere hydraulic properties: direct measurements using a miniaturized infiltrometer. New Phytol., 157, 597-603.10.1046/j.1469-8137.2003.00690.x
  9. Hallett, P., Nunan, N., Douglas, J., Young, I., 2004. Millimeterscale spatial variability in soil water sorptivity: Scale, surface elevation, and subcritical repellency effects. Soil Sci. Soc. Am. J., 68, 352-358.10.2136/sssaj2004.3520
  10. Hallett, P.D., Karim, K.H., Bengough, A.G., Otten, W., 2013. Biophysics of the vadose zone: from reality to model systems and back again. Vadose Zone J., 12, 4, doi:10.2136/vzj2013.05.0090.10.2136/vzj2013.05.0090
  11. Johnson, D.O., Arriaga, F.J., Lowery, B., 2005. Automation of a falling head permeameter for rapid determination of hydraulic conductivity of multiple samples. Soil Sci. Soc. Am. J., 69, 828-833.10.2136/sssaj2004.0014N
  12. Leeds-Harrison, P.B., Youngs, E.G., Uddin, B., 1994. A device for determining the sorptivity of soil aggregates. Eur. J. Soil Sci., 45, 269-272.10.1111/j.1365-2389.1994.tb00509.x
  13. Lichner, L., Capuliak, J., Zhukova, N., Holko, L., Czachor, H., Kollár, J., 2013. Pines influence hydrophysical parameters and water flow in a sandy soil. Biologia, 68, 1104-1108.10.2478/s11756-013-0254-7
  14. Logsdon, S.D., Jaynes, D.B., 1996. Spatial variability of hydraulic conductivity in a cultivated field at different times. Soil Sci. Soc. Am. J., 60, 703-709.10.2136/sssaj1996.03615995006000030003x
  15. Madsen, M.D., Chandler, D.G., 2007. Automation and use of mini disk infiltrometers. Soil Sci. Soc. Am. J., 71, 1469-1472.10.2136/sssaj2007.0009N
  16. Milla, K., Kish, S., 2006. A low-cost microprocessor and infrared sensor system for automating water infiltration measurements. Comput. Electron. Agr., 53, 122-129.10.1016/j.compag.2006.05.001
  17. Moret, D., Lopez, M.V., Arrue, J.L., 2004. TDR application for automated water level measurement from Mariotte reservoirs in tension disc infiltrometers. J. Hydrol., 297, 229-235.10.1016/j.jhydrol.2004.04.003
  18. Moret-Fernandez, D., Gonzalez, C., Lampurlanes, J., Vicente, J., 2012. An automated disc infiltrometer for infiltration rate measurements using a microflowmeter. Hydrol. Process., 26, 240-245.10.1002/hyp.8184
  19. Or, D., Tuller, M., 1999. Liquid retention and interfacial area in variably saturated porous media: Upscaling from single-pore to sample-scale model. Water Resour. Res., 35, 3591-3605.10.1029/1999WR900262
  20. Pittman, D.D., Kohnke, H., 1942. An automatic self recording infiltrometer. Soil Sci., 53, 429-434.10.1097/00010694-194206000-00002
  21. Prieksat, M.A., Ankeny, M.D., Kaspar, T.C., 1992. Design for an automated, self-regulating, single-ring infiltrometer. Soil Sci. Soc. Am. J., 56, 1409-1411.10.2136/sssaj1992.03615995005600050013x
  22. Spongrova, K., Kechavarzi, C., Dresser, M., Matula, S., Godwin, R.J., 2009. Development of an automated tension infiltrometer for field use. Vadose Zone J., 8, 810-817.10.2136/vzj2008.0135
  23. Thompson, J.A., Bell, J.C., Zanner, C.W., 1998. Hydrology and hydric soil extent within a mollisol catena in southeastern Minnesota. Soil Sci. Soc. Am. J., 62, 1126-1133.10.2136/sssaj1998.03615995006200040038x
  24. Wooding, R.A., 1968. Steady infiltration from a shallow circular pond. Water Resour. Res., 4, 1259-1273.10.1029/WR004i006p01259
  25. Zhao, Y., Peth, S., Hallett, P., Wang, X., Giese, M., Gao, Y., Horn, R., 2011. Factors controlling the spatial patterns of soil moisture in a grazed semi-arid steppe investigated by multivariate geostatistics. Ecohydrol., 4, 36-48. 10.1002/eco.121
DOI: https://doi.org/10.2478/johh-2014-0023 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 248 - 252
Submitted on: Jan 8, 2014
Accepted on: Apr 11, 2014
Published on: Aug 15, 2014
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Dennis C. Gordon, Paul D. Hallett, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.