Have a personal or library account? Click to login
A system-theory-based model for monthly river runoff forecasting: model calibration and optimization Cover

A system-theory-based model for monthly river runoff forecasting: model calibration and optimization

By: Jianhua Wu,  Hui Qian,  Peiyue Li and  Yanxun Song  
Open Access
|Feb 2014

References

  1. Abrahart, R.J., See, L., 2002. Multi-model data fusion for river flow forecasting: an evaluation of six alternative methods based on two contrasting catchments. Hydrol. Earth Syst. Sc. 6, 4, 655-670.10.5194/hess-6-655-2002
  2. Adrien, N.G., 2004. Computational Hydraulics and Hydrology: An Illustrated Dictionary. CRC Press, New York.
  3. Al-Taiee, T.M., 2008. Statistical prediction of Tigris River levels at Mosul hydrological station, north IRAQ. J. Hydrol. Hydromech., 56, 4, 272-279.
  4. An, Y.H., Tang, G.Y., Zhang, F.C., Yao, X.J., 2005. Application of systematic theory and frequency analytic approach on water resource evaluation. Site Investigation Science and Technology, 5, 38-40 (in Chinese.)
  5. Atiya, A.F., El-Shoura, S.M., Shaheen, S.I., El-Sherif, M.S., 1999. A Comparison Between Neural-Network Forecasting Techniques-Case Study: River Flow Forecasting. IEEE Transactions on Neural Networks, 10, 2, 402-409.10.1109/72.750569
  6. Bertalanffy, L.V., 1950. An outline of general system theory. Brit. J. Philos. Sci., 1, 2, 134-165.10.1093/bjps/I.2.134
  7. Deng, J.L., 1982. Control problems of grey systems. Systems and Control Letters, 5, 288-294.10.1016/S0167-6911(82)80025-X
  8. Dibike, Y.B., Solomatine, D.P., 2001. River Flow Forecasting Using Artificial Neural Networks. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26, 1, 1-7.10.1016/S1464-1909(01)85005-X
  9. Guo, J.J., Wu, J.Y., Wang, R.Z., 2011. A new approach to energy consumption prediction of domestic heat pump water heater based on grey system theory. Energ. Buildings, 43, 1273-1279.10.1016/j.enbuild.2011.01.001
  10. Hang, Q.F., Pan, D.H., 2010. Daily flow prediction of Taidong River based on genetic algorithm and the least square support vector machine (SVM). Pearl River, 4, 6-7, 21. (in Chinese.)
  11. Hu, T.S., Lam, K.C., Ng, S.T., 2001. River flow time series prediction with a range-dependent neural network. Hydrological Sciences-Journal-des Sciences Hydrologiques, 46, 5, 729-145.10.1080/02626660109492867
  12. Huang, J.C., 2011. Application of grey system theory in telecare. Computers in Biology and Medicine, 41, 302-306.10.1016/j.compbiomed.2011.03.00721492833
  13. Janál, P., Starý, M., 2009. Fuzzy model use for prediction of the state of emergency of river basin in the case of flash flood. J. Hydrol. Hydromech., 57, 3, 145-153.10.2478/v10098-009-0013-1
  14. Janál, P., Starý, M., 2012. Fuzzy model use for prediction of the state of emergency of river basin in the case of flash flood- Part 2. J. Hydrol. Hydromech., 60, 3, 162-173.10.2478/v10098-012-0014-3
  15. Jeníček, M., 2009. Runoff changes in areas differing in landuse in the Blanice river basin-application of the deterministic model. J. Hydrol. Hydromech., 57, 3, 154-161.10.2478/v10098-009-0014-0
  16. Kayacan, E., Ulutas, B., Kaynak, O., 2011. Grey system theorybased models in time series prediction. Expert Systems with Applications, 37, 1784-1789.10.1016/j.eswa.2009.07.064
  17. Kişi, Ö., 2007. Streamflow Forecasting Using Different Artificial Neural Network Algorithms. J. Hydrol. Eng., 12, 5, 532-539.10.1061/(ASCE)1084-0699(2007)12:5(532)
  18. Kliment, Z., Matoušková, M., Ledvinka, O., Královec, V., 2011. Trend analysis of rainfall-runoff regimes in selected headwater areas of the Czech Republic. J. Hydrol. Hydromech., 59, 1, 36-50.10.2478/v10098-011-0003-y
  19. Larsson, P., Dekker, S.W.A., Tingvall, C., 2010. The need for a systems theory approach to road safety. Safety Sci., 48, 1167-1174.10.1016/j.ssci.2009.10.006
  20. Mahabir, C., Hicks, F.E., Fayek, A.R., 2003. Application of fuzzy logic to forecast seasonal runoff. Hydrol. Process., 17, 3749-3762.10.1002/hyp.1359
  21. Sahoo, G.B., Ray, C., 2006. Flow forecasting for a Hawaii stream using rating curves and neural networks. J. Hydrol., 317, 63-80.10.1016/j.jhydrol.2005.05.008
  22. Shahraiyni, H.T., Ghafouri, M.R., Shouraki, S.B., Saghafian, B., Nasseri, M., 2012. Comparison between active learning method and support vector machine for runoff modeling. J. Hydrol. Hydromech., 60, 1, 16-32.10.2478/v10098-012-0002-7
  23. Shen, V.R.L., Chung, Y.F., Chen, T.S., 2009. A novel application of grey system theory to information security (Part I). Computer Standards & Interfaces, 31, 277-281.10.1016/j.csi.2007.11.018
  24. Singh, P., Kumar, A., Kumar, N., Kishore, N., 2010. Hydrometeorological correlations and relationships for estimating streamflow for Gangotri Glacier basin in Western Himalayas. International Journal of Water Resources and Environmental Engineering, 2, 3, 60-69.
  25. Sivakumar, B., Berndtsson, R., Persson, M., 2001. Monthly runoff prediction using phase space reconstruction. Hydrological Sciences-Journal-des Sciences Hydrologiques, 46, 3, 377-387.10.1080/02626660109492833
  26. Song, Y.X., Wu, J.H., Li, P.Y., 2011. Application of System Theory in the Calculation of Groundwater Resources Availability in Balasu Water Source. Proceedings of 2011 IEEE 3rd International Conference on Communication Software and Networks, ICCSN 2011. Xi’an, China, May, 27-29, pp. 707-710.
  27. Trivedi, H.V., Singh, J.K., 2005. Application of Grey System Theory in the Development of a Runoff Prediction Model. Biosystems Engineering, 92, 4, 521-526.10.1016/j.biosystemseng.2005.09.005
  28. Wang, H.X., Yan, T.Z., Tang, H.M., Teng, W.F., 1999. Forecasting and decision-making of systematic theories for engineering geology in environmental geosciences. Journal of China University of Geosciences, 10, 4, 327-328.
  29. Wang, W.D., 2009. Mid-long term average flow forecast of Jiyuan Hydrological Station of Python River. Henan Water Resources & South-to-North Water Diversion, 10, 35-39. (in Chinese.)
  30. Wang, K.C., 2011. A hybrid Kansei engineering design expert system based on grey system theory and support vector regression. Expert Systems with Applications, 38, 8738-8750.10.1016/j.eswa.2011.01.083
  31. Wei, H.S., 2009. System theory. World Book Publishing Company, Beijing. (in Chinese.) Wei, Y.X., Wang, L.X., 2005. Engineering hydrology. China Water Conservancy and Hydropower Press, Beijing. (in Chinese.)
  32. Wu, J.S., Han, J., Annambhotla, S., Bryant, S., 2005. Artificial Neural Networks for Forecasting Watershed Runoff and Stream Flows. J. Hydrol. Eng., 10, 3, 216-222.10.1061/(ASCE)1084-0699(2005)10:3(216)
  33. Yadav, D., Naresh, R., Sharma, V., 2011. Stream flow forecasting using Levenberg-Marquardt algorithm approach. International Journal of Water Resources and Environmental Engineering, 3, 1, aa30-40.
  34. Zhao, Y.J., Liu, X.J., Zhao, Y., 2011. Forecast for construction engineering risk based on fuzzy sets and systems theory. Systems Engineering Procedia, 1, 156-161.10.1016/j.sepro.2011.08.026
  35. Zhang, Q., 2011. Research on the vegetation change and the environmental impact factors in Hailiutu River Basin. Dissertation. China University of Geosciences (Beijing), Beijing. (in Chinese.)
DOI: https://doi.org/10.2478/johh-2014-0006 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 82 - 88
Published on: Feb 13, 2014
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Jianhua Wu, Hui Qian, Peiyue Li, Yanxun Song, published by Slovak Academy of Sciences, Institute of Hydrology
This work is licensed under the Creative Commons License.