Have a personal or library account? Click to login
Numerical investigation of solid-liquid slurry flow through an upward-facing step Cover

Numerical investigation of solid-liquid slurry flow through an upward-facing step

Open Access
|Jun 2013

References

  1. Badr, H.M., Habib, M.A., Ben-Mansour, R., Said, S.A.M., 2005. Numerical investigation of erosion threshold velocity in a pipe with sudden contraction. Computers and Fluids, 34, 721-742.10.1016/j.compfluid.2004.05.010
  2. Badr, H.M., Habib, M.A., Ben-Mansour, R., Said, S.A.M., 2008. Erosion and penetration rates of a pipe protruded in a sudden contraction. Computers and Fluids, 37, 146-160.10.1016/j.compfluid.2007.05.002
  3. Chen, L., Duan, Y., Pu, W., Zhao, C., 2009. CFD simulation of coal-water slurry flowing in horizontal pipelines. Korean J. Chem. Eng., 26, 1144-1154.10.1007/s11814-009-0190-y
  4. Clift, R., Grace, J.R., Weber, M.E., 1978. Bubbles, Drops and Particles. Academic Press, London.
  5. Doron, P., Barnea, D., 1996. Flow pattern maps for solid-liquid flow in pipes. Int. J. Multiphase Flow, 22, 273-283.10.1016/0301-9322(95)00071-2
  6. Doron, P., Granica, D., Barnea, D., 1987. Slurry flow in horizontal pipes - experimental and modeling. Int. J. Multiphase Flow, 13, 535-547.10.1016/0301-9322(87)90020-6
  7. Duz, H., 2007. Theoretical Analysis of Sudden Expansion Fittings in Pneumatic Conveying System. M.Sc. Thesis, University of Gaziantep, Gaziantep, Turkey.
  8. Enwald, H., Peirano, E., Almstedt, A.E., 1996. Eulerian twophase flow theory applied to fluidization. Int. J. Multiphase Flow, 22, 21-66.10.1016/S0301-9322(96)90004-X
  9. Erdal, A., Anderssont, H.I., 1997. Numerical aspects of flow computation through orifices. Flow Meas. Instrum., 8, 27- -37.10.1016/S0955-5986(97)00017-4
  10. Fessler, J.R., Eaton, K.E., 1997. Particle response in a planar sudden expansion flow. Exp. Thermal and Fluid Science, 15, 413-423.10.1016/S0894-1777(97)00010-1
  11. Founti, M., Klipfel, A., 1998. Experimental and computational investigations of nearly dense two-phase sudden expansion flows. Exp. Thermal and Fluid Science, 17, 27-36.10.1016/S0894-1777(97)10046-2
  12. Frawley, P., O’Mahony, A.P., Geron, M., 2010. Comparison of Lagrangian and Eulerian simulations of slurry flows in a sudden expansion. ASME J. Fluids Eng., 132, 9, 191-301.10.1115/1.4002357
  13. Gillies, R.G., Shook, C.A., Xu, J., 2004. Modelling heterogeneous slurry flows at high velocities. Can. J. Chem. Eng., 82, 1060-1065.10.1002/cjce.5450820523
  14. Habib, M.A., Badr, H.M., Ben-Mansour, R., Said, S.A.M., 2004. Numerical calculations of erosion in an abrupt pipe contraction of different contraction ratios. Int. J. Num. Methods Fluids, 46, 19-35.10.1002/fld.744
  15. Habib, M.A., Badr, H.M., Ben-Mansour, R., Kabir, M.E., 2007. Erosion rate correlations of a pipe protruded in an abrupt pipe contraction. Int. J. Impact Eng., 34, 1350-1369.10.1016/j.ijimpeng.2006.07.007
  16. Ishii, M., Mishima, K., 1984. Two-fluid model and hydrodynamic constitutive relations. Nuclear Engineering and Design, 82, 107-126.10.1016/0029-5493(84)90207-3
  17. Kaushal, D.R., Tomita, Y., 2003. Comparative study of pressure drop in multisized particulate slurry flow through pipe and rectangular duct. Int. J. Multiphase Flow, 29, 1473- -1487.10.1016/S0301-9322(03)00125-3
  18. Kaushal, D.R., Sato, K., Toyota, T., Funatsu, K., Tomita, Y., 2005. Effect of particle size distribution on pressure drop and concentration profile in pipeline flow of highly concentrated slurry. Int. J. Multiphase Flow, 31, 809-823.10.1016/j.ijmultiphaseflow.2005.03.003
  19. Koronaki, E.D., Liakos, H.H., Founti, M.A., Markatos, N.C., 2001. Numerical study of turbulent diesel flow in a pipe with sudden expansion. Appl. Math. Mod., 25, 319-333.10.1016/S0307-904X(00)00055-X
  20. Lahiri, S.K., Ghanta, K.C., 2010. Slurry flow modeling by CFD. Chem. Ind. & Chem. Eng. Quarterly, 16, 295-308.10.2298/CICEQ091030031L
  21. Launder, B.E., Spalding, D.B., 1972. Mathematical Models of Turbulence. Academic Press, London.
  22. Lin, C.X., Ebadian, M.A., 2008. A numerical study of developing slurry flow in the entrance region of a horizontal pipe. Computers and Fluids, 37, 965-974.10.1016/j.compfluid.2007.10.008
  23. Ling, J., Skudarnov, P.V., Lin, C.X., Ebadian, M.A., 2003. Numerical investigations of solid-liquid slurry flows in a fully developed flow region. Int. J. Heat and Fluid Flow, 24, 389-398.10.1016/S0142-727X(03)00018-3
  24. Marjoanovic, P., Levy, A., Mason, D.J., 1999. An investigation of the flow structure through abrupt enlargement of circular pipe. Powder Technology, 104, 296-303.10.1016/S0032-5910(99)00107-2
  25. Matousek, V., 2000. Concentration distribution in pipeline flow of sand-water mixtures. J. Hydrol. Hydromech. 48, 180-196.
  26. Messa, G.V., Malavasi, S., 2012. Solid-liquid slurry flow through an upward-facing step. In: Atti del XXXIII Convegno Nazionale di Idraulica e Costruzioni Idrauliche IDRA12 (CD-ROM), Università degli Studi di Brescia, Brescia, Italy, 10-15 September 2012.
  27. Mohanarangam, K., Tu, T.J., 2009. Numerical study of particle turbulence interaction in liquid-particle flows. AIChE Journal, 55, 1298-1302.10.1002/aic.11729
  28. Pathak, M., 2011. Computational investigations of solid-liquid particle interaction in a two-phase flow around a ducted obstruction. J. Hydraulic. Res., 49, 96-104.10.1080/00221686.2010.537147
  29. Poole, R.J., Escudier, M.P., 2004. Turbulent flow of viscoelastic liquids through an axisymmetric sudden expansion. J. Non-Newtonian Fluid Mech., 117, 25-46.10.1016/j.jnnfm.2003.11.007
  30. Roache, P.J., 1998. Verification and Validation in Computational Science and Engineering. Hermosa, Albuquerque.
  31. Shaan, J., Sumner, R.J., Gillies, R.G., Shook, C.A., 2000. The effect of particle shape on pipeline friction for Newtonian slurries of fine particles. Can. J. Chem. Eng., 78, 717-725.10.1002/cjce.5450780414
  32. Shook, C.A., Bartosik, A.S., 1994. Particle-wall stresses in vertical slurry flows. Powder Technol., 81, 117-124.10.1016/0032-5910(94)02877-X
  33. Shook, C.A., Roco, M.C., 1991. Slurry Flow: Principles and Practice. Butterworth-Heinemann, Stoneham.
  34. Siriboonluckul, N., Juntasaro, V., 2007. Turbulence modelling for wall-bounded particle-laden flow with separation. Int. Comm. Heat Mass Transfer, 34, 331-338.10.1016/j.icheatmasstransfer.2006.12.003
  35. Spalding, D.B., 1980. Numerical Computation of Multi-Phase Fluid Flow and Heat Transfer. In: Taylor, C., Morgan, K. (Eds.): Recent Advances in Numerical Methods in Fluids. Pineridge Press Limited, Swansea.
  36. Vlasak, P., Chara, Z., 2011. Effect of particle size distribution and concentration on flow behavior of dense slurries. Particul. Sci. Technol, 29, 53-65.10.1080/02726351.2010.508509
  37. Vlasak, P., Kysela, B., Chara, Z., 2012. Flow structure of coarse-grained slurry in a horizontal pipe. J. Hydrol. Hydromech., 60, 115-124.10.2478/v10098-012-0010-7
  38. Xiaowey, H., Liejin, G., 2010. Numerical investigation of catalyst- liquid slurry flow in the photocatalytic reactor for hydrogen production based on algebraic slip model. Int. J. Hydrogen Energy, 35, 7065-7072.10.1016/j.ijhydene.2009.12.162
DOI: https://doi.org/10.2478/johh-2013-0017 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 126 - 133g
Published on: Jun 1, 2013
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2013 Gianandrea Vittorio Messa, Stefano Malavasi, published by Slovak Academy of Sciences, Institute of Hydrology
This work is licensed under the Creative Commons License.