Have a personal or library account? Click to login
A numerical investigation of a buoyancy driven flow in a semi-porous cavity: comparative effects of ramped and isothermal wall conditions Cover

A numerical investigation of a buoyancy driven flow in a semi-porous cavity: comparative effects of ramped and isothermal wall conditions

Open Access
|Jun 2013

References

  1. Alazmi, B., Vafai, K., 2001. Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. Int. J. Heat Mass Transf., 44, 1735-1749.10.1016/S0017-9310(00)00217-9
  2. Beavers, G.S., Joseph, D.D., 1967. Boundary conditions at a naturally permeable wall. J. Fluid Mech., 30, 197-207.10.1017/S0022112067001375
  3. Beckermann, C., Viskanta, R., Ramadhyani, S., 1988. Natural convection in vertical enclosures containing simultaneously fluid and porous layers. J. Fluid Mech., 186, 257-284.10.1017/S0022112088000138
  4. Bhatt, B.S., Sacheti, N.C., 1994. Flow past a porous spherical shell using the Brinkman model. J. Physics D, 27, 37-41.10.1088/0022-3727/27/1/006
  5. Callahan, G.D., Marner, W.J., 1976. Transient free convection with mass transfer on an isothermal vertical plate. Int. J. Heat Mass Transf., 19, 165-174.10.1016/0017-9310(76)90109-5
  6. Chandran, P., Sacheti, N.C., Singh, A.K., 2001. Exact solution for the convective flow of fluids of different Prandtl numbers near an infinite vertical plate in a rotating system. Int. J. Appl. Mech. Engng, 6, 573-590.
  7. Chandran, P., Sacheti, N. C., Singh, A. K., 2005. Natural convection near a vertical plate with ramped wall temperature. Heat Mass Transf., 41, 459-464.10.1007/s00231-004-0568-7
  8. Chandrasekhara, B.C., Vortmeyer, D., 1979. Flow model for velocity distribution in fixed porous beds under isothermal conditions. Thermo. Fluid Dyn., 12, 105-111.10.1007/BF01002325
  9. Collins, R.E., 1961. Flow of Fluids through Porous Materials. Reinhold, New York.
  10. Hayday, A.A., Bowlus, D.A., McGraw, R.A., 1967. Free convection from a vertical plate with step discontinuities in surface temperature. ASME J. Heat Transf., 89, 244-250.10.1115/1.3614371
  11. Hill, A.A., Straughan, B., 2009a. Global stability for thermal convection in a fluid overlying a highly porous material. Proc. R. Soc. London A, 465, 207-217.10.1098/rspa.2008.0303
  12. Hill, A.A., Straughan, B., 2009b. Poiseuille flow in a fluid overlying a highly porous material. Adv. Water Resour., 32, 1609-1614.10.1016/j.advwatres.2009.08.007
  13. Kao, T.T., 1975. Laminar free convective heat transfer response along a vertical flat plate with step jump in surface temperature. Lett. Heat Mass Transf., 2, 419-428.10.1016/0094-4548(75)90008-9
  14. Kuznetzov, A.V., 1996. Analytical investigation of the fluid flow in the interface region between a porous medium and a clear fluid in channels partially filled with a porous medium. Appl. Sci. Res., 56, 53-67.10.1007/BF02282922
  15. Lee, S., Yovanovich, M.M., 1991. Laminar natural convection from a vertical plate with a step change in wall temperature. ASME J. Heat Transf., 113, 501-504.10.1115/1.2910591
  16. Lefebvre, L.P., Banhart, J., Dunand, D.C., 2008. Porous metals and metallic foams: Current status and recent developments. Adv. Engng. Mater., 10, 775-787.10.1002/adem.200800241
  17. Magyari, E., Keller, B., 2003. Buoyancy sustained by viscous dissipation. Transp. Porous Media, 53, 105-115.10.1023/A:1023514819446
  18. Mallinson, G., De Vahl Davis, G., 1973. The method of false transient for the solution of coupled elliptic equations. J. Comput. Phys., 12, 435-461.10.1016/0021-9991(73)90097-1
  19. Neale, G., Nader, W., 1974. Practical significance of Brinkman's extension of Darcy's law: coupled parallel flows within a channel and a bounding porous medium. Canad. J. Chem. Engng., 52, 475-478.10.1002/cjce.5450520407
  20. Nield, D.A., 1977. Onset of convection in a fluid layer overlying a layer of porous medium. J. Fluid Mech., 81, 513-522.10.1017/S0022112077002195
  21. Nield, D.A., Bejan, A., 2006. Convection in Porous Media. 3rd Ed. Springer Verlag, Berlin.
  22. Nishimura, T., Takumi, T., Shiraishi, M., Kawamura, Y., Ozoe, H., 1986. Numerical analysis of natural convection in a rectangular enclosure horizontally divided into fluid and porous regions. Int. J. Heat Mass Transf., 29, 889-898.10.1016/0017-9310(86)90184-5
  23. Palm, E., Weber, J. E., Kvernvold, O., 1972. On steady convection in a porous medium. J. Fluid Mech., 54, 153-161.10.1017/S002211207200059X
  24. Paul, T., Jha, B.K., Singh, A.K., 1996. Transient free convection flow in a vertical channel with constant temperature and constant heat flux on walls. Heat Mass Transf., 32, 61-63.10.1007/s002310050092
  25. Sacheti, N.C., Bhatt, B.S., 1988. Stokes and Rayleigh layers in presence of naturally permeable boundaries. In: Cheremisinoff, P.N., Cheremisinoff, N.P., Cheng S.L. (Eds.): Civil Engineering Practice. Technomic, Basel, pp. 659-695.
  26. Scheidegger, A.E., 1974. The Physics of Flow through Porous Media. Univ. Toronto Press, Toronto.
  27. Singh, A.K., Singh, J., 1983. Mass transfer effects on the flow past an accelerated vertical plate with constant heat flux. Astrophys. Space Sci., 97, 57-61.10.1007/BF00684609
  28. Singh, A.K., Thorpe, G.R., 1995. Natural convection in a confined fluid overlying a porous layer - A comparison study of different models. Indian J. Pure Appl. Math., 26, 81-95.
  29. Singh, A.K., Leonardi, E., Thorpe, G.R., 1993. Threedimensional natural convection in a confined fluid overlying a porous bed. ASME J. Heat Transf., 115, 631-638.10.1115/1.2910733
  30. Singh, A.K., Paul, T., Thorpe, G.R., 2000. Natural convection in a non-rectangular porous enclosure. Forsch. Ingenieurwesen, 65, 301-308.10.1007/s100100000028
  31. Singh, A.K., Sacheti, N.C., Chandran, P., 2006. Stratification effects on transient Stokes flow in the presence of a permeable boundary. Forsch. Ingenieurwesen, 70, 67-73.10.1007/s10010-005-0012-2
  32. Singh, A.K., Sacheti, N.C., Chandran, P., 2008. Developing flow near a semi-infinite vertical wall with ramped temperature. Int. J. Appl. Math. Stat., 13, 34-45.
  33. Singh, A.K., Sacheti, N.C., Chandran, P., 2009. Flow of an incompressible fluid in a cubical cavity with a free fluid - porous medium interface. Indian J. Indus. Appl. Math., 2, 61-71.
  34. Straughan, B., 2002. Effect of property variation and modelling on convection in a fluid overlying a porous layer. Int. J. Numer. Anal. Meth. Geomech., 26, 75-97.10.1002/nag.193
  35. Vafai, K., Tien, C.L., 1981. Boundary and inertia effects on flow and heat transfer in porous media. Int. J. Heat Mass Transf., 24, 195-203.10.1016/0017-9310(81)90027-2
  36. Valencia-López, J.J., Ochoa-Tapia, J.A., 2001. A study of buoyancy-driven flow in a confined fluid overlying a porous layer. Int. J. Heat Mass Transf., 44, 4725-4736.10.1016/S0017-9310(01)00105-3
  37. Zhao, C.Y., Lu, T.J., Hodson, H.P., 2004. Thermal radiation in ultralight metal foams with open cells. Int. J. Heat Mass Transf., 47, 2927-2939.10.1016/j.ijheatmasstransfer.2004.03.006
DOI: https://doi.org/10.2478/johh-2013-0014 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 103 - 111
Published on: Jun 1, 2013
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2013 Pallath Chandran, Nirmal C. Sacheti, Ashok K. Singh, published by Slovak Academy of Sciences, Institute of Hydrology
This work is licensed under the Creative Commons License.