Have a personal or library account? Click to login
The ability of artificial intelligence to distinguish abnormal from normal EEG in patients suspected of epilepsy – updated literature review Cover

The ability of artificial intelligence to distinguish abnormal from normal EEG in patients suspected of epilepsy – updated literature review

By: Marcin Kopka  
Open Access
|Nov 2024

References

  1. Abbasi B., Goldenholz D.M.: Machine learning applications in epilepsy. Epilepsia, 2019, 60: 2037–2047.
  2. Attia Z.I., Noseworthy P.A., Lopez-Jimenez F., Asirvatham S.J., Deshmukh A.J., Gersh B.J. et al.: An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet, 2019, 394: 861–867.
  3. Benbadis S.R, Lin K.: Errors in EEG interpretation and misdiagnosis of epilepsy: which EEG patterns are overread? Eur.Neurol., 2008, 59: 267–271.
  4. Baumgartner C., Koren J.P.: Seizure detection using scalp-EEG. Epilepsia, 2018, 59 (suppl. 1): 14–22.
  5. Benbadis S.R., Tatum W.O.: Overinterpretation of EEGs and misdiagnosis of epilepsy. J. Clin. Neurophysiol., 2003, 20: 42–44.
  6. Beniczky S., Karoly P., Nurse E., Ryvlin P., Cook M.: Machine learning and wearable devices of the future. Epilepsia, 2021, 62(suppl. 2): S116–S124.
  7. Beniczky S., Aurlien H., Brogger J.C. et al. : Standardised Computer-based Organized Reporting of EEG: SCORE. Epilepsia, 2013, 54: 1112–1124.
  8. Beniczky S., Aurlien H., Brøgger J.C., Hirsch L.J., Schomer D.L., Trinka E. et al. : Standardised computer-based organized reporting of EEG: SCORE – Second version. Clin. Neurophysiol., 2017, 128: 2334–2346.
  9. Copeland B.J.: „Artificial intelligence”. Encyclopedia Britannica. 27 Sep. 2024, https://www.britannica.com/technology/artificial-intelligence. Accessed 30 September 2024.
  10. van Donselaar C.A., Schimsheimer R.J., Geerts A.T., Declerck A.C.: Value of the electroencephalogram in adult patients with untreated idiopathic first seizures. Arch. Neurol., 1992, 49: 231–237.
  11. Fisher R.S., Acevedo C., Arzimanoglou A., Bogacz A., Cross J.H., Elger C.E., Engel J. Jr, Forsgren L. et al.: ILAE official report: a practical clinical definition of epilepsy. Epilepsia, 2014, 55: 475–482. doi: 10.1111/epi.12550.
  12. Gerber P.A., Chapman K.E., Chung S.S., Drees C., Maganti R.K., Ng Y.T. et al.: Interobserver agreement in interpreting EEG patterns in critically ill adults. J. Clin. Neurophysiol., 2008, 25: 241–249.
  13. Halford J.J., Westover M.B., LaRoche S.M., Macken M.P., Kutluay E., Edwards J.C. et al.: Interictal Epileptiform Discharge Detection in EEG in Different Practice Settings. J. Clin. Neurophysiol., 2018, 35: 375–380.
  14. Halford J.J., Arain A., Kalamangalam G.P., LaRoche S.M., Leonardo B., Basha M. et al.: Characteristics of EEG Interpreters Associated With Higher Interrater Agreement. J. Clin. Neurophysiol., 2017, 34: 168–173.
  15. Halford J.J.: Computerized epileptiform transient detection in the scalp electroencephalogram: Obstacles to progress and the example of computerized ECG interpretation. Clin. Neurophysiol., 2009, 120: 1909–1915.
  16. Japaridze G., Loeckx D., Buckinx T., Armand Larsen S., Proost R. et al.: Automated detection of absence seizures using a wearable electroencephalographic device: a phase 3 validation study and feasibility of automated behavioral testing. Epilepsia, 2023, 64 (Suppl. 4): S40–S46.
  17. Kane N., Acharya J., Beniczky S., Caboclo L., Finnigan S., Kaplan P.W. et al.: A revised glossary of terms most commonly used by clinical electroencephalographers and updated proposal for the report format of the EEG findings. Revision 2017. Clin. Neurophysiol. Pract,. 2017, 2: 170–185.
  18. Kural M.A., Duez L., Sejer Hansen V., Larsson P.G., Rampp S., Schulz R. et al.: Criteria for defining interictal epileptiform discharges in EEG: a clinical validation study. Neurology, 2020, 94: e2139–e2147.
  19. Kural M.A., Jing J., Fürbass F., Perko H., Qerama E., Johnsen B. et al.: Accurate identification of EEG recordings with interictal epileptiform discharges using a hybrid approach: Artificial intelligence supervised by human experts. Epilepsia, 2022, 63: 1064–1073.
  20. Kural M.A., Duez L., Sejer Hansen V., Larsson P.G., Rampp S., Schulz R. et al.: Criteria for defining interictal epileptiform discharges in EEG: A clinical validation study. Neurology, 2020, 94: e2139–e2147.
  21. Lodder S.S., Askamp J., van Putten M.J.: Computer-assisted interpretation of the EEG background pattern: a clinical evaluation. PloS One, 2014, 9: e85966.
  22. van Leeuwen K.G,. Sun H., Tabaeizadeh M., Struck A.F., van Putten M.J.A.M., Westover M.B.: Detecting abnormal electroencephalograms using deep convolutional networks. Clin. Neurophysiol., 2019, 130: 77–84.
  23. Pavel A.M., Rennie J.M., de Vries L.S., Blennow M., Foran A., Shah D.K. et al.: A machine-learning algorithm for neonatal seizure recognition: a multicentre, randomised, controlled trial. Lancet Child Adolesc Health, 2020, 4: 740–749.
  24. Pillai J., Sperling M.R.: Interictal EEG and the diagnosis of epilepsy. Epilepsia, 2006, 47 (Suppl. 1): 14–22.
  25. Rajpurkar P., Chen E., Banerjee O., Topol E.J.: AI in health and medicine. Nat. Med., 2022, 28: 31–38.
  26. Singh A., Trevick S.: The epidemiology of global epilepsy. Neurol. Clin., 2016, 34: 837–847.
  27. da Silva Lourenco C., Tjepkema-Cloostermans M.C., van Putten M.J.A.M.: Machine learning for detection of interictal epileptiform discharges. Clin. Neurophysiol., 2021, 132: 1433–1443.
  28. da Silva Lourenco C., Tjepkema-Cloostermans M.C., van Putten M.J.A.M.: Efficient use of clinical EEG data for deep learning in epilepsy. Clin. Neurophysiol., 2021, 132: 1234–1240.
  29. Struve F.A., Becka D.R., Green M.A., Howard A.: Reliability of clinical interpretation of an electroencephalogram. Clin. Electroencephalogr., 1975, 6: 54–60.
  30. Stroink H., Schimsheimer R.J., de Weerd A.W., Geerts A.T., Arts W.F., Peeters E.A. et al.: Interobserver reliability of visual interpretation of electroencephalograms in children with newly diagnosed seizures. Dev. Med. Child. Neurol., 2006, 48: 374–377.
  31. Tatum W.O., Rubboli G., Kaplan P.W., Mirsatari S.M., Radhakrishnan K., Gloss D. et al.: Clinical utility of EEG in diagnosing and monitoring epilepsy in adults. Clin. Neurophysiol., 2018, 129: 1056–1082.
  32. Tveit J., Aurlien H., Plis S., Calhoun V.D., Tatum W.O., Schomer D.L. et al.: Automated Interpretation of Clinical Electroencephalograms Using Artificial Intelligence. JAMA Neurol., 2023, 80: 805–812.
  33. Williams G.W., Lüders H.O,. Brickner A., Goormastic M., Klass D.W.: Interobserver variability in EEG interpretation. Neurology, 1985, 35: 1714–1719.
DOI: https://doi.org/10.2478/joepi-2024-0003 | Journal eISSN: 2299-9728 | Journal ISSN: 2300-0147
Language: English
Page range: 13 - 17
Submitted on: Jun 12, 2024
Accepted on: Oct 28, 2024
Published on: Nov 6, 2024
Published by: The Foundation of Epileptology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Marcin Kopka, published by The Foundation of Epileptology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.