References
- Srinivasan B, Kolli AR, Esch MB, et al. TEER measurement techniques for in vitro barrier model systems. J Lab Autom. 2015;20(2):107–126.
https://doi.org/10.1177/2211068214561025 - Arık YB, van der Helm MW, Odijk M, et al. Barriers-on-chips: measurement of barrier function of tissues in organs-on-chips. Biomicrofluidics. 2018;12(4):042218.
https://doi.org/10.1063/1.5023041 - van der Helm MW, van der Meer AD, Eijkel JCT, van den Berg A, Segerink LI. Microfluidic organ-on-chip technology for blood–brain barrier research. Tissue Barriers. 2016;4(1):e1142493.
https://doi.org/10.1080/21688370.2016.1142493 - Yeste J, et al. Geometric correction factor for transepithelial electrical resistance measurements in transwell and microfluidic cell cultures. J Phys D: Appl Phys. 2016;49(37):375401.
https://doi.org/10.1088/0022-3727/49/37/375401 - Sharma M, Huber E, Arnesdotter E, Behrsing HP, Bettmann A, Brandwein D, et al. Minimum information for reporting on the TEER (trans-epithelial/endothelial electrical resistance) assay (MIRTA). Arch Toxicol. 2025;99(1):57–66.
https://doi.org/10.1007/s00204-024-03879-z - CEN-CENELEC Focus Group on Organ-on-Chip. Focus Group Organ-on-Chip Standardization Roadmap [Internet]. Brussels: European Committee for Standardization; 2024. Available from:
https://www.cencenelec.eu/media/publication-july-2024-fg-ooc-roadmap.pdf - Ehlers H, Nicolas A, Schavemaker F, Heijmans JPM, Bulst M, Trietsch SJ, et al. Vascular inflammation on a chip: A scalable platform for trans-endothelial electrical resistance and immune cell migration. Front Immunol. 2023;14:1118624.
https://doi.org/10.3389/fimmu.2023.1118624 - Henry OYF, Villenave R, Cronce MJ, et al. Organs-on-chips with integrated electrodes for trans-epithelial electrical resistance (TEER) measurements of human epithelial barrier function. Lab Chip. 2017;17(13):2264–2271.
https://doi.org/10.1039/C7LC00155J - Nicolas A, Schavemaker F, Kosim K, et al. High throughput transepithelial electrical resistance (TEER) measurements on perfused membrane-free epithelia. Lab Chip. 2021;21(9):1676–1685.
https://doi.org/10.1039/D0LC00770F - Carrasco-Yagüe M, et al. Noninvasive real-time monitoring of cellular spatiotemporal dynamics via machine learning–enhanced electrical impedance spectroscopy. Sci Adv. 2025;11(7):eadx4919.
https://doi.org/10.1126/sciadv.adx4919 - Severson KA, Attia PM, Jin N, et al. Data-driven prediction of battery cycle life before capacity degradation. Nat Energy. 2019;4:383–391.
https://doi.org/10.1038/s41560-019-0356-8 - Yuan J, He S, Sang L, Zhao Z. Clinical applications of thoracic electrical impedance tomography in China: an updated review on recent 5 years. Physiol Meas. 2025;46(7):adf16e.
https://doi.org/10.1088/1361-6579/adf16e - Ewart L, Apostolou A, Briggs SA, et al. Performance assessment and economic analysis of a human Liver-Chip for predictive toxicology. Commun Med. 2022;2:154.
https://doi.org/10.1038/s43856-022-00209-1 - U.S. Food and Drug Administration. FDA’s ISTAND Pilot Program accepts submission of first organ-on-a-chip technology designed to predict human drug-induced liver injury (DILI) [Internet]. Silver Spring (MD): U.S. Food and Drug Administration; 2024 Sep 24 [cited 2026 Jan 2].
- Hou J, Nesaragi N, Tronstad C. Electrical bioimpedance in the era of artificial intelligence. J Electr Bioimpedance. 2024;15(1):1–3.
https://doi.org/10.2478/joeb-2024-0001