Have a personal or library account? Click to login
Phase angle and extracellular edema predict risk of postoperative complications in total joint arthroplasties Cover

Phase angle and extracellular edema predict risk of postoperative complications in total joint arthroplasties

Open Access
|Mar 2025

References

  1. InBodyUSA. 8-Point Tactile Electrode System [Available from: https://inbodyusa.com/general/technology/].
  2. Rheumatology ACo. Joint Replacement Surgery 2024 [Available from: https://rheumatology.org/patients/joint-replacement-surgery].
  3. Kurtz SM, Ong KL, Schmier J, Mowat F, Saleh K, Dybvik E, et al. Future clinical and economic impact of revision total hip and knee arthroplasty. J Bone Joint Surg Am. 2007;89 Suppl 3:144–51. https://doi.org/10.2106/JBJS.G.00587
  4. Bliddal H, Leeds AR, Christensen R. Osteoarthritis, obesity and weight loss: evidence, hypotheses and horizons - a scoping review. Obes Rev. 2014;15(7):578–86. https://doi.org/10.1111/obr.12173
  5. Burn E, Edwards CJ, Murray DW, Silman A, Cooper C, Arden NK, et al. The impact of BMI and smoking on risk of revision following knee and hip replacement surgery: evidence from routinely collected data. Osteoarthritis Cartilage. 2019;27(9):1294–300. https://doi.org/10.1016/j.joca.2019.05.012
  6. Fehring TK, Odum SM, Griffin WL, Mason JB, McCoy TH. The obesity epidemic: its effect on total joint arthroplasty. J Arthroplasty. 2007;22(6 Suppl 2):71–6. https://doi.org/10.1016/j.arth.2007.04.014
  7. McElroy MJ, Pivec R, Issa K, Harwin SF, Mont MA. The effects of obesity and morbid obesity on outcomes in TKA. J Knee Surg. 2013;26(2):83–8. https://doi.org/10.1055/s-0033-1341407
  8. Rajgopal V, Bourne RB, Chesworth BM, MacDonald SJ, McCalden RW, Rorabeck CH. The impact of morbid obesity on patient outcomes after total knee arthroplasty. J Arthroplasty. 2008;23(6):795–800. https://doi.org/10.1016/j.arth.2007.08.005
  9. Boyce L, Prasad A, Barrett M, Dawson-Bowling S, Millington S, Hanna SA, Achan P. The outcomes of total knee arthroplasty in morbidly obese patients: a systematic review of the literature. Arch Orthop Trauma Surg. 2019;139(4):553–60. https://doi.org/10.1007/s00402-019-03127-5
  10. Haynes J, Nam D, Barrack RL. Obesity in total hip arthroplasty: does it make a difference? Bone Joint J. 2017;99-b(1 Supple A):31–6. https://doi.org/10.1302/0301-620X.99B1.BJJ-2016-0346.R1
  11. Kok P, Seidell JC, Meinders AE. [The value and limitations of the body mass index (BMI) in the assessment of the health risks of overweight and obesity]. Ned Tijdschr Geneeskd. 2004;148(48):2379–82.
  12. Bray GA. Beyond BMI. Nutrients. 2023;15(10). https://doi.org/10.3390/nu15102254
  13. Chandrasekaran A, editor Body Mass Index-Is it Reliable Indicator of Obesity? 2018. https://doi.org/10.35248/2593-9793.18.3.111
  14. Katakam A, Collins AK, Sauder N, Shin D, Bragdon CR, Chen AF, et al. Obesity Increases Risk of Failure to Achieve the 1-Year PROMIS PF-10a Minimal Clinically Important Difference Following Total Joint Arthroplasty. J Arthroplasty. 2021;36(7s):S184–s91. https://doi.org/10.1016/j.arth.2020.11.004
  15. Shearer J, Agius L, Burke N, Rahardja R, Young SW. BMI is a Better Predictor of Periprosthetic Joint Infection Risk Than Local Measures of Adipose Tissue After TKA. J Arthroplasty. 2020;35(6s):S313–s8. https://doi.org/10.1016/j.arth.2020.01.048
  16. Ward DT, Metz LN, Horst PK, Kim HT, Kuo AC. Complications of Morbid Obesity in Total Joint Arthroplasty: Risk Stratification Based on BMI. J Arthroplasty. 2015;30(9 Suppl):42–6. https://doi.org/10.1016/j.arth.2015.03.045
  17. Turcotte J, Kelly M, Aja J, King P, MacDonald J. Complication rates and resource utilization after total hip and knee arthroplasty stratified by body mass index. J Orthop. 2021;24:111–20. https://doi.org/10.1016/j.jor.2021.02.024
  18. Lübbeke A, Zingg M, Vu D, Miozzari HH, Christofilopoulos P, Uçkay I, et al. Body mass and weight thresholds for increased prosthetic joint infection rates after primary total joint arthroplasty. Acta Orthop. 2016;87(2):132–8. https://doi.org/10.3109/17453674.2015.1126157
  19. Zusmanovich M, Kester BS, Schwarzkopf R. Postoperative Complications of Total Joint Arthroplasty in Obese Patients Stratified by BMI. J Arthroplasty. 2018;33(3):856–64. https://doi.org/10.1016/j.arth.2017.09.067
  20. Inacio MC, Kritz-Silverstein D, Raman R, Macera CA, Nichols JF, Shaffer RA, Fithian DC. The impact of pre-operative weight loss on incidence of surgical site infection and readmission rates after total joint arthroplasty. J Arthroplasty. 2014;29(3):458–64.e1. https://doi.org/10.1016/j.arth.2013.07.030
  21. Springer BD, Roberts KM, Bossi KL, Odum SM, Voellinger DC. What are the implications of withholding total joint arthroplasty in the morbidly obese? A prospective, observational study. Bone Joint J. 2019;101-b(7_Supple_C):28–32. https://doi.org/10.1302/0301-620X.101B7.BJJ-2018-1465.R1
  22. Daniilidis K, Yao D, Gosheger G, Berssen C, Budny T, Dieckmann R, Höll S. Does BMI influence clinical outcomes after total knee arthroplasty? Technol Health Care. 2016;24(3):367–75. https://doi.org/10.3233/THC-151128
  23. Giesinger JM, Loth FL, MacDonald DJ, Giesinger K, Patton JT, Simpson A, et al. Patient-reported outcome metrics following total knee arthroplasty are influenced differently by patients’ body mass index. Knee Surg Sports Traumatol Arthrosc. 2018;26(11):3257–64. https://doi.org/10.1007/s00167-018-4853-2
  24. Ledford CK, Millikan PD, Nickel BT, Green CL, Attarian DE, Wellman SS, et al. Percent Body Fat Is More Predictive of Function After Total Joint Arthroplasty Than Body Mass Index. J Bone Joint Surg Am. 2016;98(10):849–57. https://doi.org/10.2106/JBJS.15.00509
  25. Watts CD, Houdek MT, Wagner ER, Taunton MJ. Subcutaneous Fat Thickness Is Associated With Early Reoperation and Infection After Total Knee Arthroplasty in Morbidly Obese Patients. J Arthroplasty. 2016;31(8):1788–91. https://doi.org/10.1016/j.arth.2016.02.008
  26. Milone MT, Shenoy K, Pham H, Jazrawi LM, Strauss EJ. MRI analysis of peripheral soft tissue composition, not body mass index, correlates with outcomes following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2018;26(12):3711–6. https://doi.org/10.1007/s00167-018-4966-7
  27. Marinier MC, Ogunsola AS, Elkins JM. Whole-body phase angle correlates with pre-operative markers in total joint arthroplasty. J Electr Bioimpedance. 2023;14(1):60–5. https://doi.org/10.2478/joeb-2023-0008
  28. Göz M, Sert C, Hazar A, Aydın MS, Kankılıç N. Bioelectrical Impedance Analysis for Monitoring Fluid and Body Cell Mass Changes in Patients Undergoing Cardiopulmonary Bypass. Braz J Cardiovasc Surg. 2020;35(1):16–21. https://doi.org/10.21470/1678-9741-2019-0152
  29. Park I, Lee JH, Jang DH, Kim J, Hwang BR, Kim S, et al. Assessment of body water distribution in patients with sepsis during fluid resuscitation using multi-frequency direct segmental bioelectrical impedance analysis. Clin Nutr. 2020;39(6):1826–31. https://doi.org/10.1016/j.clnu.2019.07.022
  30. Yajima T, Yajima K. Association of extracellular water/total body water ratio with protein-energy wasting and mortality in patients on hemodialysis. Scientific Reports. 2023;13(1):14257. https://doi.org/10.1038/s41598-023-41131-3
  31. Zheng K, Lu J, Liu X, Ji W, Liu P, Cui J, Li W. The clinical application value of the extracellular-water-to-total-body-water ratio obtained by bioelectrical impedance analysis in people with advanced cancer. Nutrition. 2022;96:111567. https://doi.org/10.1016/j.nut.2021.111567
  32. Addolorato G, Capristo E, Caputo F, Greco AV, Ceccanti M, Stefanini GF, Gasbarrini G. Nutritional status and body fluid distribution in chronic alcoholics compared with controls. Alcohol Clin Exp Res. 1999;23(7):1232–7. https://doi.org/10.1111/j.1530-0277.1999.tb04283.x
  33. Mitsides N, Cornelis T, Broers NJH, Diederen NMP, Brenchley P, van der Sande FM, et al. Extracellular overhydration linked with endothelial dysfunction in the context of inflammation in haemodialysis dependent chronic kidney disease. PLoS One. 2017;12(8):e0183281. https://doi.org/10.1371/journal.pone.0183281
  34. Gu A, Malahias M-A, Strigelli V, Nocon AA, Sculco TP, Sculco PK. Preoperative Malnutrition Negatively Correlates With Postoperative Wound Complications and Infection After Total Joint Arthroplasty: A Systematic Review and Meta-Analysis. The Journal of Arthroplasty. 2019;34(5):1013–24. https://doi.org/10.1016/j.arth.2019.01.005
  35. Iwasaka C, Yamada Y, Nishida Y, Hara M, Yasukata J, Miyoshi N, et al. Association of appendicular extracellular-to-intracellular water ratio with age, muscle strength, and physical activity in 8,018 community-dwelling middle-aged and older adults. Archives of Gerontology and Geriatrics. 2023;108:104931. https://doi.org/10.1016/j.archger.2023.104931
  36. Yamada Y, Yoshida T, Yokoyama K, Watanabe Y, Miyake M, Yamagata E, et al. The Extracellular to Intracellular Water Ratio in Upper Legs is Negatively Associated With Skeletal Muscle Strength and Gait Speed in Older People. The Journals of Gerontology: Series A. 2016;72(3):293–8. https://doi.org/10.1093/gerona/glw125
  37. Zhou C, Lin X, Ma G, Yuan J, Zha Y. Increased Predialysis Extracellular to Intracellular Water Ratio Is Associated With Sarcopenia in Hemodialysis Patients. J Ren Nutr. 2023;33(1):157–64. https://doi.org/10.1053/j.jrn.2022.03.004
  38. Su Y, Peng L, Dong D, Ma Z, Gu X. Impact of sarcopenia in elderly patients undergoing elective total hip arthroplasty on postoperative outcomes: a propensity score-matched study. BMC Anesthesiol. 2024;24(1):158. https://doi.org/10.1186/s12871-024-02538-1
  39. Chang K, Albright JA, Testa EJ, Balboni AB, Daniels AH, Cohen E. Sarcopenia Is Associated with an Increased Risk of Postoperative Complications Following Total Hip Arthroplasty for Osteoarthritis. Biology (Basel). 2023;12(2). https://doi.org/10.3390/biology12020295
  40. Ardeljan AD, Polisetty TS, Palmer J, Vakharia RM, Roche MW. Comparative Analysis on the Effects of Sarcopenia following Primary Total Knee Arthroplasty: A Retrospective Matched-Control Analysis. J Knee Surg. 2022;35(2):128–34. https://doi.org/10.1055/s-0040-1713355
  41. Babu JM, Kalagara S, Durand W, Antoci V, Deren ME, Cohen E. Sarcopenia as a Risk Factor for Prosthetic Infection After Total Hip or Knee Arthroplasty. J Arthroplasty. 2019;34(1):116–22. https://doi.org/10.1016/j.arth.2018.09.037
  42. Jensen GL. Inflammation: roles in aging and sarcopenia. JPEN J Parenter Enteral Nutr. 2008;32(6):656–9. https://doi.org/10.1177/0148607108324585
  43. Jo E, Lee SR, Park BS, Kim JS. Potential mechanisms underlying the role of chronic inflammation in age-related muscle wasting. Aging Clin Exp Res. 2012;24(5):412–22. https://doi.org/10.1007/BF03654825
  44. Lynch GM, Murphy CH, Castro EdM, Roche HM. Inflammation and metabolism: the role of adiposity in sarcopenic obesity. Proceedings of the Nutrition Society. 2020;79(4):435–47. https://doi.org/10.1017/S0029665120007119
  45. Natarajan K, Lv N, Ninan B. Does Bioelectrical impedance derived phase angle predict adverse outcomes in elderly patients undergoing cardiac surgery? Journal of Cardiothoracic and Vascular Anesthesia. 2023;37:59. https://doi.org/10.1053/j.jvca.2023.08.107
  46. Ryz S, Nixdorf L, Puchinger J, Lassnigg A, Wiedemann D, Bernardi MH. Preoperative Phase Angle as a Risk Indicator in Cardiac Surgery-A Prospective Observational Study. Nutrients. 2022;14(12). https://doi.org/10.3390/nu14122491
  47. Gulin J, Ipavic E, Mastnak DM, Brecelj E, Edhemovic I, Kozjek NR. Phase angle as a prognostic indicator of surgical outcomes in patients with gastrointestinal cancer. Radiol Oncol. 2023;57(4):524–9. https://doi.org/10.2478/raon-2023-0060
  48. Llames L, Baldomero V, Iglesias ML, Rodota LP. [Values of the phase angle by bioelectrical impedance; nutritional status and prognostic value]. Nutr Hosp. 2013;28(2):286–95.
  49. Lim SK, Lim JY. Phase angle as a predictor of functional outcomes in patients undergoing in-hospital rehabilitation after hip fracture surgery. Arch Gerontol Geriatr. 2020;89:104060. https://doi.org/10.1016/j.archger.2020.104060
  50. Yasunaga Y, Kondoh S, Nakajima Y, Mimura S, Kobayashi M, Yuzuriha S, Kondoh S. Extracellular Water Ratio as an Indicator of the Development and Severity of Leg Lymphedema Using Bioelectrical Impedance Analysis. Lymphat Res Biol. 2021;19(3):223–30. https://doi.org/10.1089/lrb.2020.0074
  51. Cornish BH, Thomas BJ, Ward LC, Hirst C, Bunce IH. A new technique for the quantification of peripheral edema with application in both unilateral and bilateral cases. Angiology. 2002;53(1):41–7. https://doi.org/10.1177/000331970205300106
  52. Berlit S, Brade J, Tuschy B, Hornemann A, Leweling H, Eghardt V, Sütterlin M. Comparing bioelectrical impedance values in assessing early upper limb lymphedema after breast cancer surgery. In Vivo. 2012;26(5):863–7.
  53. Fortuny E, Pereira de Godoy JM, Guerreiro Godoy MDF. Phase Angle in the Assessment of Intensive outpatient treatment of primary lower limb Lymphedema. Journal Phlebology and Lymphology. 2017;10:12.
  54. Vaishya R, Agarwal AK, Gupta N, Vijay V. Chronic Lymphedema of the Lower Limb: A Rare Cause of Dislocation of Total Hip Arthroplasty. Cureus. 2016;8(4):e579. https://doi.org/10.7759/cureus.579
  55. Rainer WG, Kolz JM, Wyles CC, Houdek MT, Perry KI, Lewallen DG. Lymphedema Is a Significant Risk Factor for Failure After Primary Total Hip Arthroplasty. J Bone Joint Surg Am. 2022;104(1):55–61. https://doi.org/10.2106/JBJS.20.01970
  56. Cusma WH, Brown NM, Hopkinson WJ. Total Joint Arthroplasty in Patients With Lymphedema as Compared to a Propensity-Matched Control Cohort. Arthroplast Today. 2024;25:101307. https://doi.org/10.1016/j.artd.2023.101307
Language: English
Page range: 35 - 42
Submitted on: Nov 7, 2024
|
Published on: Mar 25, 2025
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Natalie Nguyen, Michael C. Marinier, Bryan Mouser, Victoria C. Tappa, Marshall Rupe, Jacob M. Elkins, published by University of Oslo
This work is licensed under the Creative Commons Attribution 4.0 License.