References
- Buscaglia LA, Oliveira ON, and Carmo JP. Roadmap for electrical impedance spectroscopy for sensing: a tutorial. IEEE Sensors Journal 2021; 21:22246–57. DOI: 10.1109/JSEN.2021.3085237
- Hafsa M, Atitallah BB, Ben Salah T, Amara NEB, and Kanoun O. Hand gesture recognition based on electrical impedance tomography measurements using genetic algorithms. 2021 International Workshop on Impedance Spectroscopy (IWIS). IEEE. 2021:123–5. DOI: 10.1109/IWIS54661.2021.9711814
- Alnujaim I, Alali H, Khan F, and Kim Y. Hand gesture recognition using input impedance variation of two antennas with transfer learning. IEEE Sensors Journal 2018; 18:4129–35. DOI: 10.1109/JSEN.2018.2820000
- Lu X, Sun S, Liu K, Sun J, and Xu L. Development of a wearable gesture recognition system based on two-terminal electrical impedance tomography. IEEE Journal of Biomedical and Health Informatics 2021; 26:2515–23. DOI: 10.1109/JBHI.2021.3130374
- Atitallah BB, Barioul R, Ghribi A, Bouchaala D, Derbel N, and Kanoun O. Electrodes placement investigation for hand gesture recognition based on impedance measurement. 2020 17th International Multi-Conference on Systems, Signals & Devices (SSD). IEEE. 2020:1173–7. DOI: 10.1109/SSD49366.2020.9364206
- Jiang D, Wu Y, and Demosthenous A. Hand gesture recognition using three-dimensional electrical impedance tomography. IEEE Transactions on Circuits and Systems II: Express Briefs 2020; 67:1554–8. DOI: 10.1109/TCSII.2020.3006430
- Zhang Y and Harrison C. Tomo: Wearable, low-cost electrical impedance tomography for hand gesture recognition. Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology. 2015:167–73. DOI: 10.1145/2807442.2807480
- Li X, Sun J, Wang Q, Zhang R, Duan X, Sun Y, and Wang J. Dynamic Hand Gesture Recognition Using Electrical Impedance Tomography. Sensors 2022; 22:7185. DOI: 10.3390/s22197185
- Wu Y, Jiang D, Duan J, Liu X, Bayford R, and Demosthenous A. Towards a high accuracy wearable hand gesture recognition system using EIT. 2018 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE. 2018:1–4. DOI: 10.1109/ISCAS.2018.8351296
- Li J, Wei L, Wen Y, Liu X, and Wang H. An approach to continuous hand movement recognition using SEMG based on features fusion. The Visual Computer 2023; 39:2065–79. DOI: 10.1007/s00371-022-02465-7
- Disselhorst-Klug C, Schmitz-Rode T, and Rau G. Surface electromyography and muscle force: Limits in sEMG–force relationship and new approaches for applications. Clinical Biomechanics 2009; 24:225–35. DOI: 10.1016/j.clinbiomech.2008.08.003
- Yasin M, Böhm S, Gaggero PO, and Adler A. Evaluation of EIT system performance. Physiological Measurement 2011; 32:851. DOI: 10.1088/0967-3334/32/7/S09
- Hastie T, Tibshirani R, Friedman JH, and Friedman JH. The elements of statistical learning: data mining, inference, and prediction. Vol. 2. Springer, 2009. DOI: 10.1007/978-0-387-84858-7
- Bishop CM and Nasrabadi NM. Pattern recognition and machine learning. Vol. 4. 4. Springer, 2006
- Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of Statistics 2001:1189–232. DOI: 10.1214/aos/1013203451
- Vapnik V. Support-vector networks. Machine Learning 1995; 20:273–97. DOI: 10.1007/BF00994018
- Breiman L. Random forests. Machine Learning 2001; 45:5–32. DOI: 10.1023/A:1010933404324
- Cover T and Hart P. Nearest neighbor pattern classification. IEEE Transactions on Information Theory 1967; 13:21–7. DOI: 10.1109/TIT.1967.1053964
- Cox DR. The regression analysis of binary sequences. Journal of the Royal Statistical Society Series B: Statistical Methodology 1958; 20:215–32. DOI: 10.1111/j.2517-6161.1958.tb00292.x
- Zhang Y, Xiao R, and Harrison C. Advancing hand gesture recognition with high resolution electrical impedance tomography. Proceedings of the 29th Annual Symposium on User Interface Software and Technology. 2016:843–50. DOI: 10.1145/2984511.2984574
- Manning CD. An introduction to information retrieval. Cambridge university press, 2009