References
- McCalden RW, Charron KD, MacDonald SJ, Bourne RB, Naudie DD. Does morbid obesity affect the outcome of total hip replacement?: an analysis of 3290 THRs. J Bone Joint Surg Br 93(3): 321, 2011.https://doi.org/10.1302/0301-620X.93B3.25876
- Burn E, Edwards CJ, Murray DW, Silman A, Cooper C, Arden NK, Prieto-Alhambra D, Pinedo-Villanueva R. The impact of BMI and smoking on risk of revision following knee and hip replacement surgery: evidence from routinely collected data. Osteoarthritis Cartilage 27(9): 1294, 2019.https://doi.org/10.1016/j.joca.2019.05.012
- Foreman CW, Callaghan JJ, Brown TS, Elkins JM, Otero JE. Total Joint Arthroplasty in the Morbidly Obese: How Body Mass Index ?40 Influences Patient Retention, Treatment Decisions, and Treatment Outcomes. J Arthroplasty 35(1): 39, 2020. https://doi.org/10.1016/j.arth.2019.08.019
- Inacio MC, Kritz-Silverstein D, Raman R, Macera CA, Nichols JF, Shaffer RA, Fithian DC. The impact of pre-operative weight loss on incidence of surgical site infection and readmission rates after total joint arthroplasty. J Arthroplasty 29(3): 458, 2014. https://doi.org/10.1016/j.arth.2013.07.030
- Inacio MC, Kritz-Silverstein D, Raman R, Macera CA, Nichols JF, Shaffer RA, Fithian DC. The risk of surgical site infection and re-admission in obese patients undergoing total joint replacement who lose weight before surgery and keep it off post-operatively. Bone Joint J 96-b(5): 629, 2014.https://doi.org/10.1302/0301-620X.96B5.33136
- Springer BD, Roberts KM, Bossi KL, Odum SM, Voellinger DC. What are the implications of withholding total joint arthroplasty in the morbidly obese? A prospective, observational study. Bone Joint J 101-b(7_Supple_C): 28, 2019. https://doi.org/10.1302/0301-620X.101B7.BJJ-2018-1465.R1
- Andrew JG, Palan J, Kurup HV, Gibson P, Murray DW, Beard DJ. Obesity in total hip replacement. J Bone Joint Surg Br 90(4): 424, 2008. https://doi.org/10.1302/0301-620X.90B4.20522
- Ledford CK, Millikan PD, Nickel BT, Green CL, Attarian DE, Wellman SS, Bolognesi MP, Queen RM. Percent body fat is more predictive of function after total joint arthroplasty thanbody mass index. J Bone Joint Surg Am 98(10): 849, 2016. https://doi.org/10.2106/JBJS.15.00509
- Ledford CK, Ruberte Thiele RA, Appleton JS, Jr., Butler RJ, Wellman SS, Attarian DE, Queen RM, Bolognesi MP. Percent body fat more associated with perioperative risks after total joint arthroplasty than body mass index. J Arthroplasty 29(9 Suppl): 150, 2014. https://doi.org/10.1016/j.arth.2013.12.036
- Watts CD, Houdek MT, Wagner ER, Taunton MJ. Subcutaneous fat thickness is associated with early reoperation and infection after total knee arthroplasty in morbidly obese patients. J Arthroplasty 31(8): 1788, 2016. https://doi.org/10.1016/j.arth.2016.02.008
- Milone MT, Shenoy K, Pham H, Jazrawi LM, Strauss EJ. MRI analysis of peripheral soft tissue composition, not body mass index, correlates with outcomes following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 26(12): 3711, 2018. https://doi.org/10.1007/s00167-018-4966-7
- Munugoda IP, Wills K, Cicuttini F, Graves SE, Lorimer M, Jones G, Callisaya ML, Aitken D. The association between ambulatory activity, body composition and hip or knee joint replacement due to osteoarthritis: a prospective cohort study. Osteoarthritis Cartilage 26(5): 671, 2018. https://doi.org/10.1016/j.joca.2018.02.895
- Sprowls GR, Allen BC, Lundquist KF, Sager LN, Barnett CD. Incision site fat thickness and 90-day complications for direct anterior and posterior approach total hip arthroplasty. Hip Int: 1120700020977166, 2020. https://doi.org/10.1177/1120700020977166
- Wells JC, Fewtrell MS. Measuring body composition. Arch Dis Child 91(7): 612, 2006. https://doi.org/10.1136/adc.2005.085522
- Wolf O, Mattsson P, Milbrink J, Larsson S, Mallmin H. Effects of postoperative weight-bearing on body composition and bone mineral density after uncemented total hip arthroplasty. J Rehabil Med 45(5): 498, 2013. https://doi.org/10.2340/16501977-1140
- Gutiérrez-Marín D, Escribano J, Closa-Monasterolo R, Ferré N, Venables M, Singh P, Wells JC, Muñoz-Hernando J, Zaragoza-Jordana M, Gispert-Llauradó M, Rubio-Torrents C, Alcázar M, Núñez-Roig M, Feliu A, Basora J, González-Hidalgo R, Diéguez M, Salvadó O, Pedraza A, Luque V. Validation of bioelectrical impedance analysis for body composition assessment in children with obesity aged 8-14y. Clin Nutr 40(6): 4132, 2021. https://doi.org/10.1016/j.clnu.2021.02.001
- Pichonnaz C, Bassin JP, Currat D, Martin E, Jolles BM. Bioimpedance for oedema evaluation after total knee arthroplasty. Physiother Res Int 18(3): 140, 2013. https://doi.org/10.1002/pri.1540
- Pichonnaz C, Bassin JP, Lécureux E, Currat D, Jolles BM. Bioimpedance spectroscopy for swelling evaluation following total knee arthroplasty: a validation study. BMC Musculoskelet Disord 16: 100, 2015. https://doi.org/10.1186/s12891-015-0559-5
- Mulasi U, Kuchnia AJ, Cole AJ, Earthman CP. Bioimpedance at the bedside: current applications, limitations, and opportunities. Nutr Clin Pract 30(2): 180, 2015. https://doi.org/10.1177/0884533614568155
- Hidding JT, Viehoff PB, Beurskens CH, van Laarhoven HW, Nijhuis-van der Sanden MW, van der Wees PJ. Measurement Properties of Instruments for Measuring of Lymphedema: Systematic Review. Phys Ther 96(12): 1965, 2016. https://doi.org/10.2522/ptj.20150412
- Khalil SF, Mohktar MS, Ibrahim F. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors (Basel) 14(6): 10895, 2014. https://doi.org/10.3390/s140610895
- Qin ES, Bowen MJ, James SL, Chen WF. Multi-segment bioimpedance can assess patients with bilateral lymphedema. J Plast Reconstr Aesthet Surg 73(2): 328, 2020. https://doi.org/10.1016/j.bjps.2019.06.041
- Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, Heitmann BL, Kent-Smith L, Melchior JC, Pirlich M, Scharfetter H, Schols AM, Pichard C. Bioelectrical impedance analysis--part I: review of principles and methods. Clin Nutr 23(5): 1226, 2004. https://doi.org/10.1016/j.clnu.2004.09.012
- Genton L, Herrmann FR, Spörri A, Graf CE. Association of mortality and phase angle measured by different bioelectrical impedance analysis (BIA) devices. Clin Nutr 37(3): 1066, 2018. https://doi.org/10.1016/j.clnu.2017.03.023
- Genton L, Norman K, Spoerri A, Pichard C, Karsegard VL, Herrmann FR, Graf CE. Bioimpedance-derived phase angle and mortality among older people. Rejuvenation Res 20(2): 118, 2017. https://doi.org/10.1089/rej.2016.1879
- Buter H, Veenstra JA, Koopmans M, Boerma CE. Phase angle is related to outcome after ICU admission; an observational study. Clin Nutr ESPEN 23: 61, 2018. https://doi.org/10.1016/j.clnesp.2017.12.008
- Sandini M, Paiella S, Cereda M, Angrisani M, Capretti G, Casciani F, Famularo S, Giani A, Roccamatisi L, Viviani E, Caccialanza R, Montorsi M, Zerbi A, Bassi C, Gianotti L. Perioperative interstitial fluid expansion predicts major morbidity following pancreatic surgery: appraisal by bioimpedance vector analysis. Ann Surg 270(5): 923, 2019. https://doi.org/10.1097/SLA.0000000000003536
- Marino LV, Meyer R, Johnson M, Newell C, Johnstone C, Magee A, Sykes K, Wootton SA, Pappachan JV. Bioimpedance spectroscopy measurements of phase angle and height for age are predictive of outcome in children following surgery for congenital heart disease. Clin Nutr 37(4): 1430, 2018. https://doi.org/10.1016/j.clnu.2017.06.020
- Wang H, Yang R, Xu J, Fang K, Abdelrahim M, Chang L. Sarcopenia as a predictor of postoperative risk of complications, mortality and length of stay following gastrointestinal oncological surgery. Ann R Coll Surg Engl 103(9): 630, 2021. https://doi.org/10.1308/rcsann.2021.0082
- Schiper L, Sadigursky D, Rosario DA, Schiper SP, Passos LC, Faintuch J. Hip fracture prognosis: could bioimpedance be an alternative to conventional nutritional assessment? Nutr Hosp 26(4): 904, 2011.
- González-Montalvo JI, Alarcón T, Gotor P, Queipo R, Velasco R, Hoyos R, Pardo A, Otero A. Prevalence of sarcopenia in acute hip fracture patients and its influence on short-term clinical outcome. Geriatr Gerontol Int 16(9): 1021, 2016. https://doi.org/10.1111/ggi.12590
- Suominen TH, Edgren J, Salpakoski A, Kallinen M, Cervinka T, Rantalainen T, Törmäkangas T, Heinonen A, Sipilä S. Physical function and lean body mass as predictors of bone loss after hip fracture: a prospective follow-up study. BMC Musculoskelet Disord 21(1): 367, 2020. https://doi.org/10.1186/s12891-020-03401-3
- Kolz JM, Rainer WG, Wyles CC, Houdek MT, Perry KI, Lewallen DG. Lymphedema: a significant risk factor for infection and implant failure after total knee arthroplasty. J Am Acad Orthop Surg 28(23): 996, 2020. https://doi.org/10.5435/JAAOS-D-20-00005
- Buch E, Bradfield J, Larson T, Horwich T. Effect of bioimpedance body composition analysis on function of implanted cardiac devices. Pacing Clin Electrophysiol 35(6): 681, 2012. https://doi.org/10.1111/j.1540-8159.2012.03377.x
- Chabin X, Taghli-Lamallem O, Mulliez A, Bordachar P, Jean F, Futier E, Massoullié G, Andonache M, Souteyrand G, Ploux S, Boirie Y, Richard R, Citron B, Lusson JR, Godet T, Pereira B, Motreff P, Clerfond G, Eschalier R. Bioimpedance analysis is safe in patients with implanted cardiac electronic devices. Clin Nutr 38(2): 806, 2019. https://doi.org/10.1016/j.clnu.2018.02.029
- Pichonnaz C, Bassin J-P, Lécureux E, Christe G, Currat D, Aminian K, Jolles BM. Effect of manual lymphatic drainage after total knee arthroplasty: a randomized controlled trial. Arch Phys Med Rehabil 97(5): 674, 2016. https://doi.org/10.1016/j.apmr.2016.01.006
- Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, Schneider SM, Sieber CC, Topinkova E, Vandewoude M, Visser M, Zamboni M. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48(4): 601, 2019. https://doi.org/10.1093/ageing/afz046
- McLaughlin JR, Lee KR. The outcome of total hip replacement in obese and non-obese patients at 10-to 18-years. J Bone Joint Surg Br 88(10): 1286, 2006. https://doi.org/10.1302/0301-620X.88B10.17660
- Hu M, Lin W. Effects of exercise training on red blood cell production: implications for anemia. Acta Haematol 127(3): 156, 2012. https://doi.org/10.1159/000335620
- Mairbäurl H. Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells. Front Physiol 4: 332, 2013. https://doi.org/10.3389/fphys.2013.00332
- Sepriadi S, Jannah K, Eldawaty. The effect of jogging exercise to improve hemoglobin levels. J Phys Conf Ser. 1481: 012028, 2020. https://doi.org/10.1088/1742-6596/1481/1/012028
- Tanaka S, Ando K, Kobayashi K, Seki T, Hamada T, Machino M, Ota K, Morozumi M, Kanbara S, Ito S, Ishiguro N, Hasegawa Y, Imagama S. Low bioelectrical impedance phase angle is a significant risk factor for frailty. Biomed Res Int 2019: 6283153, 2019. https://doi.org/10.1155/2019/6283153
- Uemura K, doi T, Tsutsumimoto K, Nakakubo S, Kim MJ, Kurita S, Ishii H, Shimada H. Predictivity of bioimpedance phase angle for incident disability in older adults. J Cachexia Sarcopenia Muscle 11(1): 46, 2020. https://doi.org/10.1002/jcsm.12492