Have a personal or library account? Click to login

A high accuracy voltage approximation model based on object-oriented sensitivity matrix estimation (OO-SME model) in electrical impedance tomography

Open Access
|Jan 2023

References

  1. Brown BH. Medical impedance tomography and process impedance tomography : a brief review. Meas Sci Technol. 2001;12:991-6. https://doi.org/10.1088/0957-0233/12/8/301
  2. Sun B, Baidillah MR, Darma PN, Shirai T, Narita K, Takei M. Evaluation of the effectiveness of electrical muscle stimulation on human calf muscles via frequency difference electrical impedance tomography. Physiol Meas. 2021;42(3):35008. https://doi.org/10.1088/1361-6579/abe9ff
  3. Sun B, Darma PN, Shirai T, Narita K, Takei M. Electrical-tomographic imaging of physiological-induced conductive response in calf muscle compartments during voltage intensity change of electrical muscle stimulation (vic-EMS). Physiol Meas. 2021;42(9). https://doi.org/10.1088/1361-6579/ac2265
  4. Chitturi V, Farrukh N. Spatial resolution in electrical impedance tomography : A topical review. J Electr Bioimpedance. 2017;8:66-78. https://doi.org/10.5617/jeb.3350
  5. Darma PN, Baidillah MR, Sifuna MW, Takei M. Real-Time Dynamic Imaging Method for Flexible Boundary Sensor in Wearable Electrical Impedance Tomography. IEEE Sens J. 2020;20(16):9469-79. https://doi.org/10.1109/JSEN.2020.2987534
  6. Darma PN, Takei M. High-Speed and Accurate Meat Composition Imaging by Mechanically-Flexible Electrical Impedance Tomography with k-Nearest Neighbor and Fuzzy k-Means Machine Learning Approaches. IEEE Access. 2021;9:38792-801. https://doi.org/10.1109/ACCESS.2021.3064315
  7. Cui Z, Wang Q, Xue Q, Fan W, Zhang L, Cao Z, et al. A review on image reconstruction algorithms for electrical capacitance/ resistance tomography. Sens Rev. 2016;36(4):429-45. https://doi.org/10.1108/SR-01-2016-0027
  8. Kim BS, Kim KY. Resistivity imaging of binary mixture using weighted Landweber method in electrical impedance tomography. Flow Meas Instrum. 2017;53:39-48. https://doi.org/10.1016/j.flowmeasinst.2016.05.002
  9. Brandstätter B. Jacobian Calculation for Electrical Impedance Tomography Based on the Reciprocity Principle. IEEE Trans Med Imaging. 2003;39(3):1309-12. https://doi.org/10.1109/TMAG.2003.810390
  10. Zhang L. A Modified Landweber Iteration Algorithm using Updated Sensitivity Matrix for Electrical Impedance Tomography. Int J Adv Pervasive Ubiquitous Comput. 2013;5(1):17-29. https://doi.org/10.4018/japuc.2013010103
  11. Ding M, Yue S, Li J, Wang Y, Wang H. Second-order sensitivity coefficient based electrical tomography imaging. Chem Eng Sci. 2019;199:40-9. https://doi.org/10.1016/j.ces.2019.01.020
  12. Kaipio JP, Kolehmainen V, Vauhkonen M, Somersalo E. Inverse problems with structural prior information. Inverse Probl. 1999;15(3):713-29. https://doi.org/10.1088/0266-5611/15/3/306
  13. Wang H, Wang C, Yin W. A Pre-Iteration Method for the Inverse Problem in Electrical Impedance Tomography. IEEE Trans Instrum Meas. 2004;53(4):1093-6. https://doi.org/10.1109/TIM.2004.831180
  14. Yorkey TJ, Webster JG, Tompkins WJ. Algorthms for Impedance Tomography Electrcal. IEEE Trans Biomed Eng. 1987;BME-34(11):843-52. https://doi.org/10.1109/TBME.1987.326032
  15. Shewchuk JR. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain. Science (80- ) [Internet]. 1994; Available from: http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
  16. Baidillah MR, Iman AAS, Sun Y, Takei M. Electrical Impedance Spectro-Tomography Based on Dielectric Relaxation Model. IEEE Sens J. 2017;17(24):8251-62. https://doi.org/10.1109/JSEN.2017.2710146
  17. Harikumar R, Prabu R, Raghavan S. Electrical Impedance Tomography ( EIT ) and Its Medical Applications : A Review. 2013;(4):193-8.
  18. Crabb MG. Convergence study of 2D forward problem of electrical impedance tomography with high-order finite elements. Inverse Probl Sci Eng. 2017;25(10):1397-422. https://doi.org/10.1080/17415977.2016.1255739
  19. Jehl M, Avery J, Malone E. A nonlinear approach to difference imaging in EIT ; assessment of the robustness in the presence of modelling errors. Inverse Probl. 2015;31(3):35012. http://dx.doi.org/10.1088/0266-5611/31/3/035012
  20. Peng L, Merkus H, Scarlett B. Using Regularization Methods for Image Reconstruction of Electrical Capacitance Tomography. Part Part Syst Charact. 2000;17:96-104. https://doi.org/10.1002/1521-4117(200010)17:3<96::AID-PPSC96>3.0.CO;2-8
  21. Vauhkonen M, Vadâsz D, Karjalainen PA, Somersalo E, Kaipio JP. Tikhonov regularization and prior information in electrical impedance tomography. IEEE Trans Med Imaging. 1998;17(2):285-93. https://doi.org/10.1109/42.700740
  22. Cheney M, Engineering B, York N. NOSER : An Algorithm for Solving the Inverse Conductivity Problem. Int J Imaging Syst Technol. 1991;2(1990):66-75. https://doi.org/10.1002/ima.1850020203
  23. Kang SI, Khambampati AK, Jeon MH, Kim BS, Kim KY. A sub-domain based regularization method with prior information for human thorax imaging using electrical impedance tomography. Meas Sci Technol. 2016;27:25703. https://doi.org/10.1088/0957-0233/27/2/025703
  24. Borsic A, Graham BM, Adler A, Lionheart WRB. In vivo impedance imaging with total variation regularization. IEEE Trans Med Imaging. 2010;29(1):44-54. https://doi.org/10.1109/TMI.2009.2022540
  25. Song X, Xu Y, Dong F. A hybrid regularization method combining Tikhonov with total variation for electrical resistance tomography. Flow Meas Instrum. 2015;1-9. https://doi.org/10.1016/j.flowmeasinst.2015.07.001
  26. Hu L, Wang H, Zhao B, Yang W. A hybrid reconstruction algorithm for electrical impedance tomography. Meas Sci Technol. 2007;18(3):813-8. https://doi.org/10.1088/0957-0233/18/3/033
  27. Braun F, Proenc M, Sol J, Thiran J philippe, Adler A. A Versatile Noise Performance Metric for Electrical Impedance Tomography Algorithms. IEEE Trans Biomed Circuits Syst. 2017;64(10):2321-30. https://doi.org/10.1109/TBME.2017.2659540
  28. Christian PER. Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank. SIAM J Sci Comput. 1990;11(3):503-18. https://doi.org/10.1137/0911028
  29. Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol. 1996;41(11):2251-69. https://doi.org/10.1088/0031-9155/41/11/002
Language: English
Page range: 106 - 115
Submitted on: Nov 22, 2022
Published on: Jan 8, 2023
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2023 Zengfeng Gao, Panji Nursetia Darma, Daisuke Kawashima, Masahiro Takei, published by University of Oslo
This work is licensed under the Creative Commons Attribution 4.0 License.