S. Romiti, M. Vinciguerra, W. Saade, I. Anso Cortajarena, and E. Greco, “Artificial Intelligence (AI) and Cardiovascular Diseases: An Unexpected Alliance,” Cardiol. Res. Pract., vol. 2020, no. Ml, 2020, https://doi.org/10.1155/2020/4972346.
S. Ghosh, B. P. Chattopadhyay, R. M. Roy, J. Mukherjee, and M. Mahadevappa, “Estimation of echocardiogram parameters with the aid of impedance cardiography and artificial neural networks,” Artif. Intell. Med., vol. 96, pp. 45–58, May 2019, https://doi.org/10.1016/J.ARTMED.2019.02.002.
“Five medical devices used for the early detection of heart disease.” https://www.nsmedicaldevices.com/analysis/heart-disease-detection-devices/# (accessed Aug. 19, 2022).
D. Naranjo-Hernández, J. Reina-Tosina, and M. Min, “Fundamentals, recent advances, and future challenges in bioimpedance devices for healthcare applications,” J. Sensors, vol. 2019, 2019, https://doi.org/10.1155/2019/9210258.
S. Benouar, A. Hafid, M. Attari, M. Kedir-Talha, and F. Seoane, “Systematic Variability in ICG Recordings Results in ICG Complex Subtypes – Steps Towards the Enhancement of ICG Characterization,” J. Electr. Bioimpedance, vol. 9, no. 1, p. 72, Nov. 2018, https://doi.org/10.2478/JOEB-2018-0012.
S. Chabchoub, S. Mansouri, and R. Ben Salah, “Detection of valvular heart diseases using impedance cardiography ICG,” Biocybern. Biomed. Eng., vol. 38, no. 2, pp. 251–261, 2018, https://doi.org/10.1016/j.bbe.2017.12.002.
Lababid Z, Ehmke DA, Durnin RE, Leaverton PE, Lauer RM. The first derivative thoracic impedance cardiogram. Circulation 1970; 41:651–8. American Heart Association.
S. Mansouri, T. Alhadidi, S. Chabchoub, and R. Ben Salah, “Impedance cardiography: recent applications and developments,” Biomed. Res., vol. 29, no. 19, pp. 3542–3552, 2018, https://doi.org/10.4066/BIOMEDICALRESEARCH.29-17-3479.
S. Mansouri, S. Chabchoub, Y. Alharbi, A. Alshrouf, and J. Nebhen, “A Real-Time Heart Rate Detection Algorithm Based on Peripheral Electrical Bioimpedance,” IEEJ Trans. Electr. Electron. Eng., vol. 17, no. 7, pp. 1054–1060, Jul. 2022, https://doi.org/10.1002/TEE.23595.
R. Nazário Leão, P. M. Da Silva, R. M. Pocinho, M. Alves, D. Virella, and R. Palma Reis, “Good agreement between echocardiography and impedance cardiography in the assessment of left ventricular performance in hypertensive patients,” Clin. Exp. Hypertens., vol. 40, no. 5, pp. 461–467, Jul. 2018, https://doi.org/10.1080/10641963.2017.1392558.
L. E et al., “Accuracy of impedance cardiography for evaluating trends in cardiac output: a comparison with oesophageal Doppler,” Br. J. Anaesth., vol. 113, no. 4, pp. 596–602, Oct. 2014, https://doi.org/10.1093/BJA/AEU136.
M. Panagiotou et al., “Validation of impedance cardiography in pulmonary arterial hypertension,” Clin. Physiol. Funct. Imaging, vol. 38, no. 2, pp. 254–260, Mar. 2018, https://doi.org/10.1111/CPF.12408.
V. Malik, A. Subramanian, S. Chauhan, and M. Hote, “Correlation of Electric Cardiometry and Continuous Thermodilution Cardiac Output Monitoring Systems,” World J. Cardiovasc. Surg., vol. 2014, no. 07, pp. 101–108, Jul. 2014, https://doi.org/10.4236/WJCS.2014.47016.
M. Engoren and D. Barbee, “Comparison of cardiac output determined by bioimpedance, thermodilution, and the Fick method.,” Am. J. Crit. care an Off. Publ. Am. Assoc. Crit. Nurses, vol. 14, no. 1, pp. 40–45, Jan. 2005.
A. Hafid, S. Benouar, M. Kedir-Talha, M. Attari, and F. Seoane, “Simultaneous recording of ICG and ECG using Z-RPI device with minimum number of electrodes,” J. Sensors, vol. 2018, 2018, https://doi.org/10.1155/2018/3269534.
P. Stevanović, “Thoracic electrical bioimpedance theory and clinical possibilities in per operative medicine,” Anaesthesiol. Intensive Care, vol. 39, no. 1, pp. 4–7, 2009, https://doi.org/10.22514/SV31.022008.5/HTM.
F. Heydari, M. P. Ebrahim, and M. R. Yuce, “Chest-based Real-Time Pulse and Respiration Monitoring Based on Bio-Impedance,” Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Int. Conf., vol. 2020, pp. 4398–4401, Jul. 2020, https://doi.org/10.1109/EMBC44109.2020.9176348.
P. J. Nestel et al., “Isoflavones from Red Clover Improve Systemic Arterial Compliance But Not Plasma Lipids in Menopausal Women*,” 1999. [Online]. Available: https://academic.oup.com/jcem/article/84/3/895/2864128.
J. N. Cohn, “Arterial compliance to stratify cardiovascular risk: more precision in therapeutic decision making,” Am. J. Hypertens., vol. 14, no. S5, pp. 258S-263S, Aug. 2001, https://doi.org/10.1016/S0895-7061(01)02154-9.
C. Giannattasio, M. Failla, A. A. Mangoni, L. Scandola, N. Fraschini, and G. Mancia, “Evaluation of arterial compliance in humans.,” Clin. Exp. Hypertens., vol. 18, no. 3–4, pp. 347–362, 1996, https://doi.org/10.3109/10641969609088968.
T. C. do Amaral Paes, K. C. C. de Oliveira, P. de Carvalho Padilha, and W. A. F. Peres, “Phase angle assessment in critically ill cancer patients: Relationship with the nutritional status, prognostic factors and death,” J. Crit. Care, vol. 44, pp. 430–435, Apr. 2018, https://doi.org/10.1016/J.JCRC.2018.01.006.
E. L. de Borba et al., “Phase angle of bioimpedance at 50 kHz is associated with cardiovascular diseases: systematic review and meta-analysis,” Eur. J. Clin. Nutr., 2022, https://doi.org/10.1038/S41430-022-01131-4.
R. Mattiello, M. A. Amaral, E. Mundstock, and P. K. Ziegelmann, “Reference values for the phase angle of the electrical bioimpedance: Systematic review and meta-analysis involving more than 250,000 subjects,” Clin. Nutr., vol. 39, no. 5, pp. 1411–1417, May 2020, https://doi.org/10.1016/J.CLNU.2019.07.004.
E. Mundstock et al., “Association between phase angle from bioelectrical impedance analysis and level of physical activity: Systematic review and meta-analysis,” Clin. Nutr., vol. 38, no. 4, pp. 1504–1510, Aug. 2019, https://doi.org/10.1016/J.CLNU.2018.08.031.
O. Di Vincenzo, M. Marra, and L. Scalfi, “Bioelectrical impedance phase angle in sport: A systematic review,” J. Int. Soc. Sports Nutr., vol. 16, no. 1, p. 1, Nov. 2019, https://doi.org/10.1186/S12970-019-0319-2/TABLES/2.
R. A. Nishimura et al., “2017 AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines,” J. Am. Coll. Cardiol., vol. 70, no. 2, pp. 252–289, 2017, https://doi.org/10.1016/j.jacc.2017.03.011.
J. N. Karnegis, J. Heinz, and W. G. Kubicek, “Mitral regurgitation and characteristic changes in impedance cardiogram,” Br. Heart J., vol. 45, no. 5, pp. 542–548, May 1981, https://doi.org/10.1136/hrt.45.5.542.
I. Viscor, P. Jurak, V. Vondra, J. Halamek, and P. Leinveber, "Stroke volume during Mueller maneuver measured by impedance cardiography in patients with mitral regurgitation," Computers in Cardiology Conference (CinC), vol. 36, pp. 749-751. 2009.
S. Chabchoub, S. Mansouri, and R. Bensalah, “Diagnosis of mitral insufficiency using Impedance Cardiography Technique ICG,” J. Electr. Bioimpedance, vol. 7, p. 28, Oct. 2016, https://doi.org/10.5617/jeb.2872.
R. Ben Salah, T. Alhadidi, S. Mansouri, and M. Naouar, “A New Method for Cardiac Diseases Diagnosis,” Adv. Biosci. Biotechnol., vol. 06, no. 04, pp. 311–319, 2015, https://doi.org/10.4236/ABB.2015.64030.
S. Chabchoub, S. Mansouri, and R. Ben Salah, “Detection of valvular heart diseases using impedance cardiography ICG,” Biocybern. Biomed. Eng., vol. 38, no. 2, pp. 251–261, 2018, https://doi.org/10.1016/j.bbe.2017.12.002.
A. Hough, B. Aq-cardiology, W. Palm, B. E. Cave, and A. R. Hough, “Impedance Cardiography to Guide Antihypertensive Treatment in a Patient with Difficult-to-Treat Hypertension,” no. Ci, 2017.
J. Barochiner et al., “Hemodynamic characterization of hypertensive patients with an exaggerated orthostatic blood pressure variation,” Clin. Exp. Hypertens., vol. 40, no. 3, pp. 287–291, Apr. 2018, https://doi.org/10.1080/10641963.2017.1368539.
A. P. DeMarzo, “Clinical Use of Impedance Cardiography for Hemodynamic Assessment of Early Cardiovascular Disease and Management of Hypertension,” High Blood Press. Cardiovasc. Prev., vol. 27, no. 3, pp. 203–213, Jun. 2020, https://doi.org/10.1007/S40292-020-00383-0.
B. Silva Lopes, N. Craveiro, J. Firmino-Machado, P. Ribeiro, and M. Castelo-Branco, “Hemodynamic differences among hypertensive patients with and without heart failure using impedance cardiography,” Ther. Adv. Cardiovasc. Dis., vol. 13, 2019, https://doi.org/10.1177/1753944719876517.
“Abstract 17930: Association Between Changes in the Intrathoracic Impedance as Measured by the Optivol Fluid Index in Patients With Heart Failure and Episodes of Ventricular Arrhythmias | Circulation.” https://www.ahajournals.org/doi/10.1161/circ.136.suppl_1.17930 (accessed Aug. 19, 2022).
O. K. Abou Hassan and M. M. Refaat, “Changes in intrathoracic impedance and episodes of ventricular arrhythmias in patients with heart failure and reduced ejection fraction,” Pacing Clin. Electrophysiol., vol. 41, no. 12, pp. 1583–1584, Dec. 2018, doi: 10.1111/PACE.13536.
A. Ząbek et al., “Thoracic impedance measurement in heart stimulation and cardiac arrhythmias,” Pacing Clin. Electrophysiol., vol. 44, no. 1, pp. 148–150, Jan. 2021, https://doi.org/10.1111/PACE.14121.
K. Ogawa et al., “The Usefulness and Limitations of Impedance Cardiography for Cardiac Resynchronization Therapy Device Optimization,” Int. Heart J., vol. 61, no. 5, pp. 896–904, 2020, https://doi.org/10.1536/IHJ.19-620.
Y. H. Shash, M. A. A. Eldosoky, and M. T. Elwakad, “Bioimpedance analysis in detecting vascular diseases using blood pooling method,” J. Med. Eng. Technol., vol. 42, no. 8, pp. 578–587, Nov. 2018, https://doi.org/10.1080/03091902.2019.1576794.
A. Hammoud et al., “Multi-Channel Bioimpedance System for Detecting Vascular Tone in Human Limbs: An Approach,” Sensors (Basel)., vol. 22, no. 1, Jan. 2021, https://doi.org/10.3390/S22010138.
P. Anyfanti, A. Triantafyllou, E. Gkaliagkousi, N. Koletsos, S. Aslanidis, and S. Douma, “Association of non-invasive hemodynamics with arterial stiffness in rheumatoid arthritis,” Scand. Cardiovasc. J., vol. 52, no. 4, pp. 171–176, Jul. 2018, https://doi.org/10.1080/14017431.2018.1453943.
K. Ben Abdessalem and R. Ben Salah, “Diagnosis of arterial thrombosis and stenosis in blood vessel Using bioimpedance analysis Diagnosis of arterial thrombosis and stenosis in blood vessel Using bioimpedance analysis,” ,” International Research Journal of Engineering and Technology (IRJET), vol. 2, no. 7, pp. 316-321, 2015.
D. Lindholm, E. Fukaya, N. J. Leeper, and E. Ingelsson, “Bioimpedance and new-onset heart failure: A longitudinal study of >500 000 individuals from the general population,” J. Am. Heart Assoc., vol. 7, no. 13, 2018, https://doi.org/10.1161/JAHA.118.008970.
S. J. Hankinson, C. H. Williams, V. K. Ton, S. S. Gottlieb, and C. C. Hong, “Should we overcome the resistance to bioelectrical impedance in heart failure?,” Expert Rev. Med. Devices, vol. 17, no. 8, pp. 785–794, 2020, https://doi.org/10.1080/17434440.2020.1791701.
K. Bel Haj Ali et al., “Value of Dynamic Variation of Impedance Cardiac output in the diagnosis of Heart Failure in emergency department patients with undifferentiated dyspnea,” Am. J. Emerg. Med., vol. 49, pp. 29–34, Nov. 2021, https://doi.org/10.1016/J.AJEM.2021.05.042.
A. Jurek et al., “Acromegaly: The Research and Practical Value of Noninvasive Hemodynamic Assessments via Impedance Cardiography,” Front. Endocrinol. (Lausanne)., vol. 12, Jan. 2022, https://doi.org/10.3389/FENDO.2021.793280.
A. Galas et al., “Complex assessment of patients with decompensated heart failure: The clinical value of impedance cardiography and N-terminal pro-brain natriuretic peptide,” Heart Lung, vol. 48, no. 4, pp. 294–301, Jul. 2019, https://doi.org/10.1016/J.HRTLNG.2018.10.004.
D. González-Islas et al., “Body composition changes assessment by bioelectrical impedance vectorial analysis in right heart failure and left heart failure,” Heart Lung, vol. 49, no. 1, pp. 42–47, Jan. 2020, https://doi.org/10.1016/J.HRTLNG.2019.07.003.
M. Sato, K. Inai, M. Shimizu, H. Sugiyama, and T. Nakanishi, “Bioelectrical impedance analysis in the management of heart failure in adult patients with congenital heart disease.,” Congenit. Heart Dis., vol. 14, no. 2, pp. 167–175, Oct. 2018, https://doi.org/10.1111/CHD.12683.
P. Krzesinski et al., “Noninvasive Bioimpedance Methods From the Viewpoint of Remote Monitoring in Heart Failure,” JMIR mHealth uHealth, vol. 9, no. 5, May 2021, https://doi.org/10.2196/25937.
F. Bernal-Ceballos, N. H. Wacher-Rodarte, A. Orea-Tejeda, T. Hernández-Gilsoul, and L. Castillo-Martínez, “Bioimpedance vector analysis in stable chronic heart failure patients: Level of agreement between single and multiple frequency devices,” Clin. Nutr. ESPEN, vol. 43, pp. 206–211, Jun. 2021, https://doi.org/10.1016/J.CLNESP.2021.04.015.
A. Jurek et al., “Cushing’s Disease: Assessment of Early Cardiovascular Hemodynamic Dysfunction With Impedance Cardiography,” Front. Endocrinol. (Lausanne)., vol. 12, Oct. 2021, https://doi.org/10.3389/FENDO.2021.751743.
D. Shah, S. Patel, and S. K. Bharti, “Heart Disease Prediction using Machine Learning Techniques,” SN Comput. Sci. 2020 16, vol. 1, no. 6, pp. 1–6, Oct. 2020, https://doi.org/10.1007/S42979-020-00365-Y.
M. Kirmani, “Cardiovascular Disease Prediction using Data Mining Techniques,” Orient. J. Comput. Sci. Technol., vol. 10, no. 2, pp. 520–528, 2017, https://doi.org/10.13005/ojcst/10.02.38.
A. Rath, D. Mishra, G. Panda, and S. C. Satapathy, An exhaustive review of machine and deep learning based diagnosis of heart diseases, no. 0123456789. Springer US, 2021.