References
- Alexander JF, Eggert S, Price D. Label-Free Monitoring of 3D Tissue Models via Electrical Impedance Spectroscopy. BIOREV. 2019;2:111–34. https://doi.org/10.1007/11663_2018_5
- Irons HR, Cullen DK, Shapiro NP, Lambert NA, Lee RH, LaPlaca MC. Three-dimensional neural constructs: A novel platform for neurophysiological investigation. J Neural Eng. 2008;5:333–41. https://doi.org/10.1088/1741-2560/5/3/006
- Gerasimenko T, Nikulin S, Zakharova G, Poloznikov A, Petrov V, Baranova A, et al. Impedance Spectroscopy as a Tool for Monitoring Performance in 3D Models of Epithelial Tissues. Bioeng Biotechnol. 2020;7:474. https://doi.org/10.3389/fbioe.2019.00474
- Maskarinec SA, Franck C, Tirrell DA, Ravichandran G. Quantifying cellular traction forces in three dimensions. Proc Natl Acad Sci USA. 2009;106:22108–13. https://doi.org/10.1073/pnas.0904565106
- Friedl P, Zänker KS, Bröcker EB. Cell migration strategies in 3-D extracellular matrix: Differences in morphology, cell matrix interactions, and integrin function. Microsc Res Tech. 1998;43:369–78. https://doi.org/10.1002/(SICI)1097-0029(19981201)43:5<369::AID-JEMT3>3.0.CO;2-6
- Pedersen JA, Swartz MA. Mechanobiology in the third dimension. Ann Biomed Eng. 2005;33:1469–90. https://doi.org/10.1007/s10439-005-8159-4
- Kalmykov A, Huang C, Bliley J, Shiwarski D, Tashman J, Abdullah A, et al. Organ-on-e-chip: Three-dimensional self-rolled biosensor array for electrical interrogations of human electrogenic spheroids. Sci Adv. 2019;5(8):eaax0729. https://doi.org/10.1126/sciadv.aax0729
- Lin YP, Yu WC, Hsu TL, Ding PYA, Yang WC, Chen CH. The extracellular fluid-to-intracellular fluid volume ratio is associated with large-artery structure and function in hemodialysis patients. American Journal of Kidney Diseases. 2003;42(5):990–9. https://doi.org/10.1016/j.ajkd.2003.07.002
- Bera TK. Bioelectrical impedance methods for noninvasive health monitoring: a review. Journal of Medical Engineering. 2014;2014:381251. https://doi.org/10.1155/2014/381251
- Bera TK, Jampana N, Lubineau G. A LabVIEW-based electrical bioimpedance spectroscopic data interpreter (LEBISDI) for biological tissue impedance analysis and equivalent circuit modelling. Journal of Electrical Bioimpedance 2016;7(1):35–54. https://doi.org/10.5617/jeb.2978
- Dean DA, Ramanathan T, Machado D, Sundararajan R. Electrical Impedance Spectroscopy Study of Biological Tissues. J Electrostat 2008;66(3–4):165–77. https://doi.org/10.1016/j.elstat.2007.11.005
- Pethig R. Dielectric properties of biological materials: Biophysical and medical applications. IEEE Trans Electr Insul. 1984;19:453–73. https://doi.org/10.1109/TEI.1984.298769
- Pethig R, Kell DB. The Passive electrical properties of biological systems: their significance in physiology, biophysics, and biotechnology. Phys Med Biol. 1987;32:933–70. https://doi.org/10.1088/0031-9155/32/8/001
- Lingwood BE, Colditz PB, C. WL, editors. Biomedical applications of electrical impedance analysis. ISSPA '99 Proceedings of the Fifth International Symposium on Signal Processing and its Applications; 1999: IEEE Cat. No.99EX359.
- Roy SK, Karal MAS, Kadir MA, Rabbani KS. A new six-electrode electrical impedance technique for probing deep organs in the human body. European Biophysics Journal. 2019;48:711–9. https://doi.org/10.1007/s00249-019-01396-x
- Bera TK. Bioelectrical Impedance and The Frequency Dependent Current Conduction Through Biological Tissues: A Short Review. IOP Conf Series: Materials Science and Engineering 331: IOP Publishing; 2018. https://doi.org/10.1088/1757-899X/331/1/012005
- Martinsen ØG, Grimnes S, Schwan HP. Interface phenomena and dielectric properties of biological tissu. Encyclopedia of Surface and Colloid Science. 2002;20:2643–53.
- Franks W, Schenker I, Schmutz P, Hierlemann A. Impedance characterization and modeling of electrodes for biomedical applications. IEEE Trans Biomed Eng. 2005;52:1295–302. https://doi.org/10.1109/TBME.2005.847523
- Abdur Rahman AR, Price DT, Bhansali S. Effect of electrode geometry on the impedance evaluation of tissue and cell culture. Sensors Actuators B Chem. 2007;127:89–96. https://doi.org/10.1016/j.snb.2007.07.038
- MacKay S, Hermansen P, Wishart D, Chen J. Simulations of interdigitated electrode interactions with gold nanoparticles for impedance-based biosensing applications. Sensors. 2015;15:22192–208. https://doi.org/10.3390/s150922192
- Hoffmann KP, Ruff R, Poppendieck W. Long-term characterization of electrode materials for surface electrodes in biopotential recording. International Conference of the IEEE Engineering in Medicine and Biology Society New York: IEEE; 2006. p. 2239–42. https://doi.org/10.1109/IEMBS.2006.260443
- Riistama J, Lekkala J. Electrode-electrolyte interface properties in implantation conditions. International Conference of the IEEE Engineering in Medicine and Biology Society; New York: IEEE; 2006. p. 6021–4. https://doi.org/10.1109/IEMBS.2006.259712
- Pliquett U, Frense D, Schönfeldt M, Frätzer C, Zhang Y, Cahill B, et al. Testing miniaturized electrodes for impedance measurements within the beta-dispersion - a practical approach. J Electr Bioimped. 2010;1:41–55. https://doi.org/10.5617/jeb.111
- Howlader MMR, Doyle TE, Mohtashami S, Kish JR. Charge transfer and stability of implantable electrodes on flexible substrate. Sensors Actuators B Chem. 2013;178:132–9. https://doi.org/10.1016/j.snb.2012.12.051
- Shinwari MW, Zhitomirsky D, Deen IA, Selvaganapathy PR, Deen MJ, Landheer D. Microfabricated reference electrodes and their biosensing applications. Sensors. 2010;10:1679–715. https://doi.org/10.3390/s100301679
- Polk BJ, Stelzenmuller A, Mijares G, MacCrehan W, Gaitan M. Ag/AgCl microelectrodes with improved stability for microfluidics. Sensors and Actuators B: Chemical. 2006;114(1):239–47. https://doi.org/10.1016/j.snb.2005.03.121
- Fosdick LE AJ. Optimization of microelectrode array geometry in a rectangular flow channel detector. Anal Chem. 1986;58(12):2481–5. https://doi.org/10.1021/ac00125a028
- Min J, Baeumner AJ. Characterization and optimization of interdigitated ultramicroelectrode arrays as electrochemical biosensor transducers. Electroanalysis. 2004;16(9):724–9. https://doi.org/10.1002/elan.200302872
- Sandison ME, Anicet N, Glidle A, Cooper JM. Optimization of the geometry and porosity of microelectrode arrays for sensor design. Anal Chem. 2002;74(22):5717–25. https://doi.org/10.1021/ac025649w
- Lempka SF, Johnson MD, Barnett DW, Moffitt MA, Otto KJ, Kipke DR, et al. Optimization of microelectrode design for cortical recording based on thermal noise considerations. Engineering in Medicine and Biology Society. EMBS'06 28th annual international conference of the IEEE; Piscataway: IEEE; 2006. https://doi.org/10.1109/IEMBS.2006.259432
- Wang L, Wang H, Mitchelson K, Yu Z, Cheng J. Analysis of the sensitivity and frequency characteristics of coplanar electrical cell-substrate impedance sensors. Biosens Bioelectron. 2008;24(1):14–21. https://doi.org/10.1016/j.bios.2008.03.018
- Tian B, Liu J, Dvir T, Jin L, Tsui JH, Qing Q, et al. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat Mater. 2012;11(11):986–94. https://doi.org/10.1038/nmat3404
- Timko BP, Cohen-Karni T, Yu G, Qing Q, Tian B, Lieber CM. Electrical recording from hearts with flexible nanowire device arrays. Nano Lett. 2009;9(2):914–8. https://doi.org/10.1021/nl900096z
- Viventi J, et al. A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci Transl Med. 2010;2(24):24ra2. https://doi.org/10.1126/scitranslmed.3000738
- Kim DH, et al. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nature Mater. 2011;10:316–23. https://doi.org/10.1038/nmat2971
- Kim DH, et al. Epidermal electronics. Science. 2011;333:838–43. https://doi.org/10.1126/science.1206157
- Viventi J, et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nature Neurosci. 2011;14:1599–605. https://doi.org/10.1038/nn.2973
- Pettersen FJ, Høgetveit JO. From 3D tissue data to impedance using Simpleware ScanFE+IP and COMSOL Multiphysics - a tutorial. Journal of Electrical Bioimpedance. 2011;2:13–32. https://doi.org/10.5617/jeb.173
- Deford JF, Gandhi OP. An impedance method to calculate currents induced in biological bodies exposed to quasi-static electromagnetic fields. IEEE Trans Electr Comp 1985;EMC-27:168–73. https://doi.org/10.1109/TEMC.1985.304281
- Scaramuzza M, Ferrario A, De Toni A. Development of an innovative electrolytes characterization approach using a combined COMSOL/MATLAB/HSPICE system. PhD Research in Microelectronics and Electronics (PRIME): IEEE; 2010.
- Davis TA. Algorithm 832: UMFPACK V4.3---An unsymmetric-pattern multifrontal method. ACM Trans Math Softw. 2004;30:196–9. https://doi.org/10.1145/992200.992206
- Lichtenberg AJ. The quasi-static approximation for moving and finite temperature plasmas. IEEE Transactions on Electron Devices. 1964;11:62–5. https://doi.org/10.1109/T-ED.1964.15284
- Jin Y, Kumar S, Gerhard RA, editors. Simulation of the Impedance Response of Thin Films as a Function of Film Conductivity and Thickness. COMSOL conference; 2015; Boston.
- COMSOL, Multiphysics, Platform. Simulate Static and Low-Frequency Electromagnetics with the AC/DC Module [Available from: https://www.comsol.com/acdc-module].
- Gabriel C, Gabriel S, Corthout E. The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol. 1996;41:2231–49. https://doi.org/10.1088/0031-9155/41/11/001
- Olmo A, Yúfera A, editors. Computer simulation of microelectrode based bio-impedance measurements with COMSOL. Third International Conference on Biomedical Electronics and Devices; 2010; Valencia, Spain.
- Pettersen FJ. On sensitivity in transfer impedance measurements. Journal of Electrical Bioimpedance. 2018;9(1):159–62. https://doi.org/10.2478/joeb-2018-0020
- Walker J, Halliday D, Resnick R. Fundamentals of physics. Hoboken. 10th ed. NJ: Wiley; 2014.
- Geselowitz DB. An application of electrocardiographic lead theory to impedance plethysmography. IEEE TransBiomedEng. 1971;18:38–41. https://doi.org/10.1109/TBME.1971.4502787
- Grimnes S, Martinsen ØG. Bioimpedance & Bioelectricity Basics. 3rd ed: Elsevier Science; 2014. https://doi.org/10.1016/B978-0-12-411470-8.00011-8
- Dewarrat F, Falco L, Caduff A, Talary M, editors. Optimization of Skin Impedance Sensor Design with Finite Element Simulations Proceedings of the COMSOL Conference 2008; Hannover.