Alexander JF, Eggert S, Price D. Label-Free Monitoring of 3D Tissue Models via Electrical Impedance Spectroscopy. BIOREV. 2019;2:111–34. https://doi.org/10.1007/11663_2018_5
Gerasimenko T, Nikulin S, Zakharova G, Poloznikov A, Petrov V, Baranova A, et al. Impedance Spectroscopy as a Tool for Monitoring Performance in 3D Models of Epithelial Tissues. Bioeng Biotechnol. 2020;7:474. https://doi.org/10.3389/fbioe.2019.00474
Maskarinec SA, Franck C, Tirrell DA, Ravichandran G. Quantifying cellular traction forces in three dimensions. Proc Natl Acad Sci USA. 2009;106:22108–13. https://doi.org/10.1073/pnas.0904565106
Kalmykov A, Huang C, Bliley J, Shiwarski D, Tashman J, Abdullah A, et al. Organ-on-e-chip: Three-dimensional self-rolled biosensor array for electrical interrogations of human electrogenic spheroids. Sci Adv. 2019;5(8):eaax0729. https://doi.org/10.1126/sciadv.aax0729
Lin YP, Yu WC, Hsu TL, Ding PYA, Yang WC, Chen CH. The extracellular fluid-to-intracellular fluid volume ratio is associated with large-artery structure and function in hemodialysis patients. American Journal of Kidney Diseases. 2003;42(5):990–9. https://doi.org/10.1016/j.ajkd.2003.07.002
Bera TK. Bioelectrical impedance methods for noninvasive health monitoring: a review. Journal of Medical Engineering. 2014;2014:381251. https://doi.org/10.1155/2014/381251
Bera TK, Jampana N, Lubineau G. A LabVIEW-based electrical bioimpedance spectroscopic data interpreter (LEBISDI) for biological tissue impedance analysis and equivalent circuit modelling. Journal of Electrical Bioimpedance 2016;7(1):35–54. https://doi.org/10.5617/jeb.2978
Dean DA, Ramanathan T, Machado D, Sundararajan R. Electrical Impedance Spectroscopy Study of Biological Tissues. J Electrostat 2008;66(3–4):165–77. https://doi.org/10.1016/j.elstat.2007.11.005
Pethig R. Dielectric properties of biological materials: Biophysical and medical applications. IEEE Trans Electr Insul. 1984;19:453–73. https://doi.org/10.1109/TEI.1984.298769
Pethig R, Kell DB. The Passive electrical properties of biological systems: their significance in physiology, biophysics, and biotechnology. Phys Med Biol. 1987;32:933–70. https://doi.org/10.1088/0031-9155/32/8/001
Lingwood BE, Colditz PB, C. WL, editors. Biomedical applications of electrical impedance analysis. ISSPA '99 Proceedings of the Fifth International Symposium on Signal Processing and its Applications; 1999: IEEE Cat. No.99EX359.
Roy SK, Karal MAS, Kadir MA, Rabbani KS. A new six-electrode electrical impedance technique for probing deep organs in the human body. European Biophysics Journal. 2019;48:711–9. https://doi.org/10.1007/s00249-019-01396-x
Bera TK. Bioelectrical Impedance and The Frequency Dependent Current Conduction Through Biological Tissues: A Short Review. IOP Conf Series: Materials Science and Engineering 331: IOP Publishing; 2018. https://doi.org/10.1088/1757-899X/331/1/012005
Franks W, Schenker I, Schmutz P, Hierlemann A. Impedance characterization and modeling of electrodes for biomedical applications. IEEE Trans Biomed Eng. 2005;52:1295–302. https://doi.org/10.1109/TBME.2005.847523
Abdur Rahman AR, Price DT, Bhansali S. Effect of electrode geometry on the impedance evaluation of tissue and cell culture. Sensors Actuators B Chem. 2007;127:89–96. https://doi.org/10.1016/j.snb.2007.07.038
Hoffmann KP, Ruff R, Poppendieck W. Long-term characterization of electrode materials for surface electrodes in biopotential recording. International Conference of the IEEE Engineering in Medicine and Biology Society New York: IEEE; 2006. p. 2239–42. https://doi.org/10.1109/IEMBS.2006.260443
Riistama J, Lekkala J. Electrode-electrolyte interface properties in implantation conditions. International Conference of the IEEE Engineering in Medicine and Biology Society; New York: IEEE; 2006. p. 6021–4. https://doi.org/10.1109/IEMBS.2006.259712
Pliquett U, Frense D, Schönfeldt M, Frätzer C, Zhang Y, Cahill B, et al. Testing miniaturized electrodes for impedance measurements within the beta-dispersion - a practical approach. J Electr Bioimped. 2010;1:41–55. https://doi.org/10.5617/jeb.111
Howlader MMR, Doyle TE, Mohtashami S, Kish JR. Charge transfer and stability of implantable electrodes on flexible substrate. Sensors Actuators B Chem. 2013;178:132–9. https://doi.org/10.1016/j.snb.2012.12.051
Shinwari MW, Zhitomirsky D, Deen IA, Selvaganapathy PR, Deen MJ, Landheer D. Microfabricated reference electrodes and their biosensing applications. Sensors. 2010;10:1679–715. https://doi.org/10.3390/s100301679
Polk BJ, Stelzenmuller A, Mijares G, MacCrehan W, Gaitan M. Ag/AgCl microelectrodes with improved stability for microfluidics. Sensors and Actuators B: Chemical. 2006;114(1):239–47. https://doi.org/10.1016/j.snb.2005.03.121
Fosdick LE AJ. Optimization of microelectrode array geometry in a rectangular flow channel detector. Anal Chem. 1986;58(12):2481–5. https://doi.org/10.1021/ac00125a028
Min J, Baeumner AJ. Characterization and optimization of interdigitated ultramicroelectrode arrays as electrochemical biosensor transducers. Electroanalysis. 2004;16(9):724–9. https://doi.org/10.1002/elan.200302872
Sandison ME, Anicet N, Glidle A, Cooper JM. Optimization of the geometry and porosity of microelectrode arrays for sensor design. Anal Chem. 2002;74(22):5717–25. https://doi.org/10.1021/ac025649w
Lempka SF, Johnson MD, Barnett DW, Moffitt MA, Otto KJ, Kipke DR, et al. Optimization of microelectrode design for cortical recording based on thermal noise considerations. Engineering in Medicine and Biology Society. EMBS'06 28th annual international conference of the IEEE; Piscataway: IEEE; 2006. https://doi.org/10.1109/IEMBS.2006.259432
Wang L, Wang H, Mitchelson K, Yu Z, Cheng J. Analysis of the sensitivity and frequency characteristics of coplanar electrical cell-substrate impedance sensors. Biosens Bioelectron. 2008;24(1):14–21. https://doi.org/10.1016/j.bios.2008.03.018
Tian B, Liu J, Dvir T, Jin L, Tsui JH, Qing Q, et al. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat Mater. 2012;11(11):986–94. https://doi.org/10.1038/nmat3404
Timko BP, Cohen-Karni T, Yu G, Qing Q, Tian B, Lieber CM. Electrical recording from hearts with flexible nanowire device arrays. Nano Lett. 2009;9(2):914–8. https://doi.org/10.1021/nl900096z
Viventi J, et al. A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci Transl Med. 2010;2(24):24ra2. https://doi.org/10.1126/scitranslmed.3000738
Kim DH, et al. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nature Mater. 2011;10:316–23. https://doi.org/10.1038/nmat2971
Pettersen FJ, Høgetveit JO. From 3D tissue data to impedance using Simpleware ScanFE+IP and COMSOL Multiphysics - a tutorial. Journal of Electrical Bioimpedance. 2011;2:13–32. https://doi.org/10.5617/jeb.173
Deford JF, Gandhi OP. An impedance method to calculate currents induced in biological bodies exposed to quasi-static electromagnetic fields. IEEE Trans Electr Comp 1985;EMC-27:168–73. https://doi.org/10.1109/TEMC.1985.304281
Scaramuzza M, Ferrario A, De Toni A. Development of an innovative electrolytes characterization approach using a combined COMSOL/MATLAB/HSPICE system. PhD Research in Microelectronics and Electronics (PRIME): IEEE; 2010.
Davis TA. Algorithm 832: UMFPACK V4.3---An unsymmetric-pattern multifrontal method. ACM Trans Math Softw. 2004;30:196–9. https://doi.org/10.1145/992200.992206
Lichtenberg AJ. The quasi-static approximation for moving and finite temperature plasmas. IEEE Transactions on Electron Devices. 1964;11:62–5. https://doi.org/10.1109/T-ED.1964.15284
Jin Y, Kumar S, Gerhard RA, editors. Simulation of the Impedance Response of Thin Films as a Function of Film Conductivity and Thickness. COMSOL conference; 2015; Boston.
COMSOL, Multiphysics, Platform. Simulate Static and Low-Frequency Electromagnetics with the AC/DC Module [Available from: https://www.comsol.com/acdc-module].
Gabriel C, Gabriel S, Corthout E. The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol. 1996;41:2231–49. https://doi.org/10.1088/0031-9155/41/11/001
Olmo A, Yúfera A, editors. Computer simulation of microelectrode based bio-impedance measurements with COMSOL. Third International Conference on Biomedical Electronics and Devices; 2010; Valencia, Spain.
Pettersen FJ. On sensitivity in transfer impedance measurements. Journal of Electrical Bioimpedance. 2018;9(1):159–62. https://doi.org/10.2478/joeb-2018-0020
Geselowitz DB. An application of electrocardiographic lead theory to impedance plethysmography. IEEE TransBiomedEng. 1971;18:38–41. https://doi.org/10.1109/TBME.1971.4502787
Dewarrat F, Falco L, Caduff A, Talary M, editors. Optimization of Skin Impedance Sensor Design with Finite Element Simulations Proceedings of the COMSOL Conference 2008; Hannover.