Cole KS and Cole RH. Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 1941; 9:341–51. DOI: 10.1063/1.1750906
Mainardi F. Why the Mittag-Leffler function can be considered the queen function of the fractional calculus? Entropy 2020; 22:1359. DOI: 10.3390/e22121359
Garrappa R, Mainardi F, and Maione G. Models of dielectric relaxation based on completely monotone functions. Fract. Calc. Appl. Anal. 2016; 19:1105–60. DOI: 10.1515/fca-2016-0060
Williams G and Watts DC. Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 1970; 66:80–5. DOI: 10.1039/TF9706600080
Mainardi F. Fractional calculus and waves in linear viscoelesticity: An introduction to mathematical models. London, UK: Imperial College Press, 2010 :1–347. DOI: 10.1142/p614
Mainardi F. On some properties of the Mittag-Leffler function Eα(−tα), completely monotone for t > 0 with 0 < α < 1. Discrete Cont Dyn-B 2014 :2267–78. DOI: 10.3934/dcdsb.2014.19.2267
De la Fuente M, Jubindo MP, Solier J, and Tello M. The memory effect in dielectric response. J Phys C Solid State Phys 1985; 18:6547. DOI: 10.1088/0022-3719/18/35/019
Garrappa R. The Mittag-Leffler function, MATLAB Central File Exchange. 2015. Available from: https://www.mathworks.com/matlabcentral/fileexchange/48154-the-mittag-leffler-function [Accessed on: 2020 Dec 2]
Podlubny I, Magin RL, and Trymorush I. Niels Henrik Abel and the birth of fractional calculus. Fract. Calc. Appl. Anal. 2017; 20:1068–75. DOI: 10.1515/fca-2017-0057