Have a personal or library account? Click to login

Time domain characterization of the Cole-Cole dielectric model

By:
Open Access
|Dec 2020

References

  1. Cole KS and Cole RH. Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 1941; 9:341–51. DOI: 10.1063/1.1750906
  2. Grimnes S and Martinsen ØG. Bioimpedance and bioelectricity basics, 3rd ed. Academic Press, 2015 :1–584. DOI: 10.1016/C2012-0-06951-7
  3. Mainardi F. Why the Mittag-Leffler function can be considered the queen function of the fractional calculus? Entropy 2020; 22:1359. DOI: 10.3390/e22121359
  4. Westerlund S. Dead matter has memory! Phys. Scr. 1991; 43:174. DOI: 10.1088/0031-8949/43/2/011
  5. Garrappa R, Mainardi F, and Maione G. Models of dielectric relaxation based on completely monotone functions. Fract. Calc. Appl. Anal. 2016; 19:1105–60. DOI: 10.1515/fca-2016-0060
  6. Williams G and Watts DC. Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 1970; 66:80–5. DOI: 10.1039/TF9706600080
  7. Mainardi F. Fractional calculus and waves in linear viscoelesticity: An introduction to mathematical models. London, UK: Imperial College Press, 2010 :1–347. DOI: 10.1142/p614
  8. Mainardi F. On some properties of the Mittag-Leffler function Eα(−tα), completely monotone for t > 0 with 0 < α < 1. Discrete Cont Dyn-B 2014 :2267–78. DOI: 10.3934/dcdsb.2014.19.2267
  9. Dissado L. Dielectric Response. Springer handbook of electronic and photonic materials. Springer, 2017. Chap. 10:219–45. DOI: 10.1007/978-3-319-48933-9_10
  10. Holm S and Holm MB. Restrictions on wave equations for passive media. J. Acoust. Soc. Am. 2017; 142. DOI: 10.1121/1.5006059
  11. Holm S.Waves with power-law attenuation. Switzerland: Springer and ASA Press, 2019 :1–312. DOI: 10.1007/978-3-030-14927-7
  12. De la Fuente M, Jubindo MP, Solier J, and Tello M. The memory effect in dielectric response. J Phys C Solid State Phys 1985; 18:6547. DOI: 10.1088/0022-3719/18/35/019
  13. Garrappa R. The Mittag-Leffler function, MATLAB Central File Exchange. 2015. Available from: https://www.mathworks.com/matlabcentral/fileexchange/48154-the-mittag-leffler-function [Accessed on: 2020 Dec 2]
  14. Garrappa R. Numerical evaluation of two and three parameter Mittag-Leffler functions. SIAM J, Num. Anal. 2015; 53:1350–69. DOI: 10.1137/140971191
  15. Podlubny I, Magin RL, and Trymorush I. Niels Henrik Abel and the birth of fractional calculus. Fract. Calc. Appl. Anal. 2017; 20:1068–75. DOI: 10.1515/fca-2017-0057
Language: English
Page range: 101 - 105
Submitted on: Dec 7, 2020
Published on: Dec 31, 2020
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2020 Sverre Holm, published by University of Oslo
This work is licensed under the Creative Commons Attribution 4.0 License.