Svoboda RM, Gharia MJ, Shell J and Gregory WD. Bioimpedance measurement as an assessment of margin positivity in Mohs surgical specimens of nonmelanoma skin cancer: Management implications. Journal of the American Academy of Dermatology 2018; 79:591–3. DOI: 10.1016/j.jaad.2018.02.075
Zellner JL, Spinale FG and Crawford FA. Bioimpedance: A novel method for the determination of extravascular lung water. Journal of Surgical Research 1990; 48:454–9. DOI: 10.1016/0022-4804(90)90012-Q
Sirtoli V, Morcelles K, Gomez J and Bertemes-Filho P. Design and evaluation of an electrical bioimpedance device based on DIBS for myography during isotonic exercises. Journal of Low Power Electronics and Applications 2018; 8:50–73. DOI: 10.3390/jlpea8040050
Jakovljevic DG, Trenell MI and MacGowan GA. Bioimpedance and bioreactance methods for monitoring cardiac output. Best Practice & Research Clinical Anaesthesiology 2014; 28:381–94. DOI: 10.1016/j.bpa.2014.09.003
Hong S, Lee K, Ha U, Kim H, Lee Y, Kim Y and Yoo HJ. A 4.9 mΩ-sensitivity mobile electrical impedance tomography IC for early breast-cancer detection system. IEEE Journal of Solid-State Circuits 2014; 50:245–57. DOI: 10.1109/JSSC.2014.2355835
Tucker AS, Fox RM and Sadleir RJ. Biocompatible, high precision, wideband, improved howland current source with lead-lag compensation. IEEE Transactions on Biomedical Circuits and Systems 2013; 7:63–70. DOI: 10.1109/TBCAS.2012.2199114
Storn R. On the usage of differential evolution for function optimization. en. Proceedings of North American Fuzzy Information Processing. Berkeley, CA, USA: IEEE, 1996 :519–23. DOI: 10.1109/NAFIPS.1996.534789
Morcelles KF, Sirtoli VG, Bertemes-Filho P and Vincence VC. Howland current source for high impedance load applications. Review of Scientific Instruments 2017 Nov; 88:114705. DOI: 10.1063/1.5005330