Nguyen PK, Neofytou E, Rhee J-W, Wu JC. Potential Strategies to Address the Major Clinical Barriers Facing Stem Cell Regenerative Therapy for Cardiovascular Disease. JAMA Cardiol. 2016 Nov 1;1(8):953–16. https://doi.org/10.1001/jamacardio.2016.2750
Gamal W, Wu H, Underwood I, Jia J, Smith S, Bagnaninchi PO. Impedance-based cellular assays for regenerative medicine. Phil Trans R Soc B. 2018 May 21;373(1750):20170226. https://doi.org/10.1098/rstb.2017.0226
Lee AS, Tang C, Cao F, Xie X, van der Bogt K, Hwang A, et al. Effects of cell number on teratoma formation by human embryonic stem cells. Cell Cycle. 2014 Oct 28;8(16):2608–12. https://doi.org/10.4161/cc.8.16.9353
Xiao C, Luong JHT. On-Line Monitoring of Cell Growth and Cytotoxicity Using Electric Cell-Substrate Impedance Sensing (ECIS). Biotechnol Prog. American Chemical Society (ACS); 2003 Jun 6;19(3):1000–5. https://doi.org/10.1021/bp025733x
Krinke D, Jahnke H-G, Mack TGA, Hirche A, Striggow F, Robitzki AA. A novel organotypic tauopathy model on a new microcavity chip for bioelectronic label-free and real time monitoring. Biosensors and Bioelectronics. Elsevier B.V; 2010 Sep 15;26(1):162–8. https://doi.org/10.1016/j.bios.2010.06.002
Hug TS. Biophysical Methods for Monitoring Cell-Substrate Interactions in Drug Discovery. ASSAY and Drug Development Technologies. 2003 Jun;1(3):479–88. https://doi.org/10.1089/154065803322163795
Jahnke H-G, Braesigk A, Mack TGA, Pönick S, Striggow F, Robitzki AA. Impedance spectroscopy based measurement system for quantitative and label-free real-time monitoring of tauopathy in hippocampal slice cultures. Biosensors and Bioelectronics. Elsevier B.V; 2012 Feb 15;32(1):250–8. https://doi.org/10.1016/j.bios.2011.12.026
Xu Y, Xie X, Duan Y, Wang L, Cheng Z, Cheng J. A review of impedance measurements of whole cells. Biosensors and Bioelectronics. 2016 Mar;77:824–36. https://doi.org/10.1016/j.bios.2015.10.027
Holzinger A, Langs G, Denk H, Zatloukal K, Müller H. Causability and explainability of artificial intelligence in medicine. WIREs Data Mining Knowl Discov. 2019 Feb 22;9(4):2672–13. https://doi.org/10.1002/widm.1312
Tronstad C, Strand-Amundsen R. Possibilities in the application of machine learning on bioimpedance time-series. Journal of Electrical Bioimpedance. 2019 Jun 26;10(1):24–33. https://doi.org/10.2478/joeb-2019-0004
Strand-Amundsen RJ, Tronstad C, Reims HM, Reinholt FP, Høgetveit JO, Tønnessen TI. Machine learning for intraoperative prediction of viability in ischemic small intestine. Physiol Meas. 2018 Oct 1;39(10):105011–24. https://doi.org/10.1088/1361-6579/aae0ea
Li W, Sun W, Zhang Y, the WWPO, 2011. Rapid induction and long-term self-renewal of primitive neural precursors from human embryonic stem cells by small molecule inhibitors. National Acad. Sciences. https://doi.org/10.1073/pnas.1014041108
Graves A, Schmidhuber J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks. 2005 Jul;18(5-6):602–10. https://doi.org/10.1016/j.neunet.2005.06.042
Burger M, Neubauer A. Analysis of Tikhonov regularization for function approximation by neural networks. Neural Networks. 2003 Jan;16(1):79–90. https://doi.org/10.1016/s0893-6080(02)00167-3